Главная страница

Реферат пож. Показатели пожароопасности веществ пожароопасность веществ и материалов


Скачать 68.9 Kb.
НазваниеПоказатели пожароопасности веществ пожароопасность веществ и материалов
Дата17.06.2019
Размер68.9 Kb.
Формат файлаdocx
Имя файлаРеферат пож.docx
ТипДокументы
#82062

1.ПОКАЗАТЕЛИ ПОЖАРООПАСНОСТИ ВЕЩЕСТВ

Пожароопасность веществ и материалов – совокупность их свойств, характеризующих их способность к возникновению и распространению горения. Следствием горения может быть пожар и взрыв.

Перечень показателей, характеризующих пожаро-взрывоопасность веществ приведен в табл. 1.

Таблица 1

Показатели взрыво-пожароопасности веществ разных агрегатных состояний

Показатель

Агрегатное состояние

газы

жидкости

твердые

пыли

Группа горючести

+

+

+

+

Температура вспышки



+

+



Температура воспламенения



+

+

+

Температура самовоспламенения

+

+

+

+

Концентрационные пределы воспламенения

+

+



+

Температурные пределы воспламенения



+





Самовозгорание





+

+

Минимальная энергия зажигания

+

+



+–

Способность взрываться и гореть при взаимодействии с водой, О2 и др. веществами

+

+

+

+

Скорость распространения пламени

+

+





Скорость выгорания



+





Минимальное взрывоопасное содержание кислорода

+

+



+

Максимальное давление взрыва

+

+



+

Скорость нарастания давления

+

+



+

Пожар как фактор техногенной катастрофы

Пожар – это горение вне специального очага, которое не контролируется и может привести к массовому поражению и гибели людей, а также к нанесению экологического ,материального и другого вреда.

Горение  это химическая реакция окисления, сопровождающаяся выделением теплоты и света. Для возникновения горения требуется наличие трех факторов: горючего вещества, окислителя и источника загорания. Окислителями могут быть кислород, хлор, фтор, бром, йод, окиси азота и другие .Кроме того, необходимо чтобы горючее вещество было нагрето до определенной температуры и находилось в определенном количественном соотношении с окислителем, а источник загорания имел определенную энергию.

Наибольшая скорость горения наблюдается в чистом кислороде. При уменьшении содержания кислорода в воздухе горение прекращается . Горение при достаточной концентрации окислителя называется полным , а при его нехватке – неполным.

Выделяют три основных вида самоускорения химической реакции при горении: тепловой, цепной и цепочно-тепловой. Тепловой механизм связан с экзотермичностью процесса окисления и возрастанием скорости химической реакции с повышением температуры. Цепное ускорение реакции связано с катализом превращений, которое осуществляют промежуточные продукты превращений. Реальные процессы горения осуществляются, как правило, по комбинированному (цепочно-тепловой) механизму.

Процесс возникновения горения подразделяется на несколько видов.

Вспышка  быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание  возникновение горения под воздействием источника зажигания.

Воспламенение  возгорание, сопровождающееся появлением пламени.

Самовозгорание  явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения вещества при отсутствии источника зажигания. Различают несколько видов самовозгорания :

  • химическое– от воздействия на горючие вещества кислорода, воздуха, воды или взаимодействия веществ;

  • микробиологическое – происходит при определенной влажности и температуры в растительных продуктах (самовозгорание зерна);

  • тепловое – вследствие долговременного воздействия незначительных источников тепла (например ,при температуре 100 С тирса ,ДВП и другие склоны к самовозгоранию).

Самовоспламенение  самовозгорание, сопровождается появлением пламени.

Взрыв - процесс чрезвычайно быстрого, под влиянием внешнего источника воспламенения, химического превращения вещества, сопровождающегося выделением газов и большого количества тепла, нагревающего эти газы до высокой температуры, в результате чего газы совершают работу.

Взрывная способность горючих газов, паров и пыли в воздухе сохраняется в определенных интервалах их концентраций. Существуют нижние и верхние концентрационные и температурные пределы распространения пламени.

Нижний (верхний) концентрационные пределы распространения пламени - минимально (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при которой возможно распространение пламени по смеси на любое расстояние от источника зажигания.

Невозможность воспламенения горючей смеси при концентрации ниже НКПРП объясняется малым количеством горючего вещества и избытком воздуха. Чем меньше коэффициент избытка воздуха, тем больше скорость горения и выше давление паров при взрыве.

Верхний концентрационный предел распространения пламени характеризуется избытком горючего и малым количеством воздуха.

Чем ниже нижний концентрационный предел и больше концентрационная область распространения пламени, тем большую пожарную опасность они представляют.

В первом случае взрыв не происходит из-за недостатка горючего вещества, во втором - из-за недостатка воздуха (кислорода), необходимого для окисления горючего вещества.

Температура самовоспламенения - характеризует минимальную температуру вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.

Температура вспышки (Твсп) - наименьшая температура конденсированного вещества, при которой в условиях специальных испытаний над его поверхностью образуются пары, способные вспыхнуть в воздухе при поднесении к ним внешнего источника зажигания (пламени или нагретого до высокой температуры тела). Устойчивое горение при этом не устанавливается вследствие малой скорости испарения горючей жидкости. Температура вспышки показывает, при какой температуре вещество подготовлено к воспламенению и становится огнеопасным в открытом сосуде.

В зависимости от температуры вспышки горючие жидкости подразделяются на:

  • легковоспламеняющиеся (ЛВЖ) с температурой вспышки не свыше 61 °С (в закрытом тигле) или не свыше 66 °С (в открытом тигле);

  • горючее (ГЖ) с температурой вспышки паров выше, соответственно, 61 и 66°С.

ЛВЖ в свою очередь делятся на три разряда:

а) особо опасные ЛВЖ - имеющие температуру вспышки от -18°C и ниже в закрытом тигле или - 13°С и ниже в открытом;

б) постоянно опасные ЛВЖ - имеющие температуру вспышки выше -18°С до +23°С в закрытом тигле или выше -13°С до +27°С - в открытом;

в) опасные при повышенной температуре ЛВЖ. К данному разряду относятся жидкости с температурой вспышки более +23°С до +61°С включительно (в закрытом тигле) или более +27°С до +66°С - в открытом.

Температура воспламенения (Твоспл) - наименьшая температура вещества, при которой в условиях специальных испытаний оно выделяет горючие пары и газы с такой скоростью, что при воздействии на них источника зажигания наблюдается способность воспламениться при поднесении внешнего источника воспламенения.

Разница между температурой вспышки и воспламенения для ЛВЖ составляет 1-2°С, для ГЖ - до 10-15°С и более.

Горение сопровождается выделением тепла, продуктов сгорания и свечением.

Для устойчивого горения необходимо, чтобы теплообразование при этом процессе было больше теплоотдачи в окружающую среду. Если в результате горения образуются газы, то горение сопровождается пламенем.

Процесс воспламенения горючих газов и жидкостей без поднесения к ним открытого огня, а только под влиянием внешнего воздействия тепла называется самовоспламенением.

Температурные пределы воспламенения  температуры, при которых насыщенные пары вещества образуют в данной окислительной среде концентрации, равные соответственно нижнему и верхнему концентрационным пределам воспламенения жидкостей.

Горючими называются вещества , способные самостоятельно гореть после изъятия источника загорания.

По степени горючести вещества делятся на: горючие (сгораемые), трудногорючие (трудносгораемые) и негорючие (несгораемые).

К горючим относятся такие вещества, которые при воспламенении посторонним источником продолжают гореть и после его удаления.

К трудногорючим относятся такие вещества, которые не способны распространять пламя и горят лишь в месте воздействия источника зажигания.

Негорючими являются вещества, не воспламеняющиеся даже при воздействии достаточно мощных источников зажигания (импульсов).

Горючие вещества могут быть в трех агрегатных состояниях: жидком, твердом и газообразном. Большинство горючих веществ независимо от агрегатного состояния при нагревании образует газообразные продукты, которые при смешении с воздухом, содержащим определенное количество кислорода, образуют горючую среду. Горючая среда может образоваться при тонкодисперсном распылении твердых и жидких веществ.

Из горючих газов и пыли образуются горючие смеси при любой температуре, в то время как твердые вещества и жидкости могут образовать горючие смеси только при определенных температурах.

В производственных условиях может иметь место образование смесей горючих газов или паров в любых количественных соотношениях. Однако взрывоопасными эти смеси могут быть только тогда, когда концентрация горючего газа или пара находится между границами воспламеняемых концентраций.

Минимальная концентрация горючих газов и паров в воздухе, при которой они способны загораться и распространять пламя, называющееся нижним концентрационным пределом воспламенения.

Максимальная концентрация горючих газов и паров, при которой еще возможно распространение пламени, называется верхним концентрационным пределом воспламенения.

Указанные пределы зависят от температуры газов и паров: при увеличении температуры на 100 0С величины нижних пределов воспламенения уменьшаются на 810 %, верхних  увеличиваются на 1215 %.

Пожарная опасность вещества тем больше, чем ниже нижний и выше верхний пределы воспламенения и чем ниже температура самовоспламенения.

Пыли горючих и некоторых не горючих веществ ( например алюминий, цинк) могут в смеси с воздухом образовать горючие концентрации.

Наибольшую опасность по взрыву представляет взвешенная в воздухе пыль. Однако и осевшая на конструкциях пыль представляет опасность не только с точки зрения возникновения пожара, но и вторичного взрыва, вызываемого в результате взвихривания пыли при первичном взрыве.

Минимальная концентрация пыли в воздухе, при которой происходит ее загорание, называется нижним пределом воспламенения пыли.

Поскольку достижение очень больших концентраций пыли во взвешенном состоянии практически нереально, термин "верхний предел воспламенения" к пыли не применяется.

Воспламенение жидкости может произойти только в том случае, если над ее поверхностью имеется смесь паров с воздухом в определенном количественном соотношении, соответствующим нижнему температурному пределу воспламенения.

2. ИСКЛЮЧЕНИЕ ОБРАЗОВАНИЯ ГОРЮЧЕЙ СРЕДЫ ВНУТРИ ПРОИЗВОДСТВЕННОГО ОБОРУДОВАНИЯ.

Предупреждение образования горючей паровоздушной среды внутри аппаратов с жидкостью при их нормальной работе могут обеспечивать следующие технологические решения:

1. Ликвидация свободного паровоздушного объема достигается:

1.1. полным заполнением аппарата жидкостью (к таким аппаратам можно отнести реакторы змеевикового типа, теплообменники, электродегидраторы и т. п., которые при нормальном режиме работы всегда работают при полном заполнении). (Здесь существует три опасных ситуации: перелив при переполнении аппарата жидкостью, разрушение аппарата и перелив при повышении температуры в полностью заполненном аппарате.);

1.2. хранением жидкости под защитным слоем воды (например, сероуглерод) или над слоем воды (например, нефтепродукты);

1.3. применением резервуаров с плавающей крышей (рис. 3); Кольцевой зазор между плавающей крышей и стенкой резервуара уплотняют специальным затвором. Горючая среда может образоваться только в кольцевом зазоре под уплотнением, а также при снижении уровня жидкости ниже предельного нижнего положения крыши, когда она опускается на опорные стойки.

1.4. применением резервуаров со стационарной крышей и плавающим понтоном (рис. 4); При эксплуатации резервуаров с понтонами необходимо иметь в виду, что их надпонтонное пространство хотя и значительно медленнее, чем с открытым зеркалом испарения, но все же постепенно насыщается парами находящейся в резервуаре жидкости. Нарастание концентрации даже у исправных резервуаров происходит тем быстрее, чем выше упругость насыщенных паров жидкости и больше интенсивность чередования операций слива–налива. Поэтому для предупреждения образования горючей концентрации в таких резервуарах надпонтонное пространство должно эффективно проветриваться с помощью специальных устройств естественного вентилирования - дефлекторов, вентиляционных проемов и т.п.

http://texttotext.ru/images/stories/lecture001/image035.gif

Рис. 3. Схема наземного резервуара с плавающей крышей:

1 - корпус; 2 - плавающая крыша; 3 – жидкость.

http://texttotext.ru/images/stories/lecture001/image037.gif

РИС. 4 Схема наземного резервуара с понтоном:

1 - корпус; 2 - понтон; 3 - дыхательный клапан; 4 - газовое (паровоздушное) пространство; 5 – жидкость.

1.5. применением емкостей с мягкими (эластичными) стенками обычно из резинотканевого материала, которые представляют собой замкнутую оболочку в виде подушки.

2. Обеспечение безопасного температурного режима работы аппарата - достигается автоматическим поддержанием такой рабочей температуры в аппарате, которая лежит за температурными пределами воспламенения, т. е. ниже нижнего (например, в емкостях с мазутом или дизельным топливом) или выше верхнего (например, в ректификационных колоннах, реакторах) пределов воспламенения.

3. Снижение концентрации горючих паров жидкости в паровоздушном пространстве обеспечивается:

3.1. применением высоко-стойких пен, эмульсий, полых микрошариков из полимерных материалов, плавающих на поверхности и препятствующих ее испарению (аналогично плавающему понтону);

3.2. введением в горючую жидкость добавок, снижающих в газовом пространстве парциальное давление ее паров и снижающих испаряемость жидкости. В качестве таких добавок могут быть применены, например, вода - для метилового, этилового и др. спиртов, ацетона и уксусной кислоты; четыреххлористый углерод-для нефтепродуктов и сероуглерода.

4. Флегматизация паровоздушного пространства аппаратов путем введения в него негорючих (инертных) газов.

Негорючие газы (азот, диоксид углерода, водяной пар, выхлопные газы двигателей внутреннего сгорания и др.) снижают парциальную концентрацию кислорода в смеси, сужая пределы воспламенения. Кроме того, обладая определенной теплоемкостью, они способны отнимать часть тепла, которое пошло бы на нагрев исходной горючей смеси. Поэтому эффективность действия инертного компонента тем сильнее, чем выше его теплоемкость. При введении достаточного количества инертного газа в горючую смесь воспламенение ее становится невозможным. Следовательно, существует флегматизирующая концентрация инертного компонента, которая на практике может быть определена расчетным путем.

5. Применение системы газовой обвязки емкостных аппаратов (резервуаров) с изменяющимся уровнем жидкости.

Это решение позволяет значительно снизить поступление атмосферного воздуха в паровоздушное пространство опорожняемого резервуара.

Для предупреждения образования горючей концентрации в аппаратах с газами используются следующие технические решения:

5.1. Поддержание рабочей концентрации горючего газа в смеси с окислителем за концентрационными пределами воспламенения с помощью систем автоматики; при этом условие опасности преобразуется в условие безопасности.

5.2. Флегматизация негорючими (инертными) газами. Такое решение используется при наличии смеси горючего газа с окислителем, находящейся в пределах воспламенения или близкой к ним.

5.3. Поддержание в газовых коммуникациях избыточного давления, предотвращающего подсос наружного воздуха через неплотности.

5.4. Непрерывный автоматический контроль содержания опасной примеси в газе (окислителя в инертном газе, окислителя в смеси горючего и инертного газа, горючего в окислителе). Для контроля содержания опасной примеси аппараты и трубопроводы оборудуют стационарными автоматическими газоанализаторами и, кроме этого, предусматривают блокировку на узлах задвижек, исключающую попадание примеси в технологический газовый поток.

5.5. Стабилизация зоны горения горючей смеси в защищенном пространстве реактора путем выбора скорости и режима движения горючей смеси, предотвращающих «проскок» пламени (перемещение зоны горения) в незащищенное пространство реактора либо других аппаратов.

5.6. Аварийное преднамеренное изменение состава горючей смеси, обеспечивающее быстрый перевод ее в негорючее состояние. Это достигается путем использования инертного разбавителя или путем прекращения подачи одного из компонентов горючей смеси, в некоторых случаях – прекращением подачи сразу двух компонентов.

Для предупреждения образования горючей концентрации в аппаратах с пылями могут быть применены следующие технологические решения:

  1. Применение менее «пылящих» технологических процессов:

  • вибрационный помол;

  • измельчение с увлажнением;

  • мокрые процессы обработки твердых и волокнистых веществ);

  1. Устройство систем местных отсосов (систем аспирации) от технологического оборудования;

  2. Флегматизация негорючими (инертными) газами и минеральными пылями. Например, введение инертных газов внутрь аппаратов в опасные периоды работы, использование их для пневматической транспортировки опасных пылевидных материалов, добавление к огнеопасной пыли минеральных веществ (мела, цемента и т.п.);

  3. использование негорючих газов для пневматической транспортировки наиболее опасных пылей;

  4. предупреждение оседания пылей на внутренних поверхностях аппаратов и трубопроводов. Это достигается:

  • выбором оптимальной (выше скорости витания) скорости пневмотранспортирования пылевидных материалов,

  • повышением класса чистоты при их обработке,

  • использованием плавных поворотов, переходов диаметров и сопряжений поверхностей,

  • принятием соответствующих уклонов (конусной части аппаратов не менее 60°, самотечных трубопроводных линий - не менее 45° к горизонту),

  • использованием вибрационных устройств,

  • предохранением образования конденсата (теплоизоляцией оборудования, размещением его в отапливаемых помещениях и т. п.).

Горючие газы, пары и жидкости выходят в производственное помещение или на открытую площадку, если применяются следующие технологические аппараты:

  • аппараты с открытой поверхностью испарения;

  • аппараты с дыхательными устройствами;

  • аппараты периодического действия;

  • аппараты с сальниковыми уплотнениями и т.п.

  • Размеры образующихся наружных пожаровзрывоопасных зон определяются:

  • свойствами обращающихся в производственном процессе веществ,

  • количеством их, которое может выходить наружу за определенный промежуток времени;

  • условиями выброса, растекания и рассеивания в окружающей среде.

Аппараты с открытой поверхностью испарения.

К аппаратам с открытой поверхностью испарения относят:

  • окрасочные ванны;

  • ванны для пропитки ткани и бумаги растворенными смолами;

  • ванны для промывки и сушки деталей;

  • открытые резервуары, емкости и т.п.

Горючая концентрация смеси паров с воздухом над поверхностью таких аппаратов образуется, если температура жидкости в нем выше температуры вспышки ее паров.

Количество жидкости, испаряющейся со свободной поверхности, зависит от:

  • физических свойств этой жидкости;

  • температурных условий;

  • площади и времени испарения;

  • подвижности воздуха.

Испарение горючих жидкостей в неподвижную среду.

При испарении горючих жидкостей в неподвижный воздух затрудняется рассеивание паров, создаются благоприятные условия для скопления паров у мест их выделения с образованием местных пожароопасных концентраций.

Практический интерес представляют:

  • концентрация пара по высоте над поверхностью испаряющейся жидкости;

  • возможные размеры зоны взрывоопасности;

  • количество испаряющейся жидкости.

Испарение горючих жидкостей в подвижную среду.

Молекулярная диффузия паров жидкости в неподвижный воздух протекает весьма медленно.

Испарение жидкостей в подвижную среду протекает за счет:

  • молекулярного движения;

  • движения воздуха;

  • более интенсивного теплообмена;

При конвективной диффузии над поверхностью жидкости образуется небольшой толщины пограничный слой с насыщенной концентрацией паров, затем происходит резкий перепад концентрации и в последующих слоях воздуха, т.е. выше пограничного слоя, вследствие интенсивного перемешивания воздуха при движении концентрация пара будет примерно одинаковой.

Аппараты с дыхательными устройствами.

Нормальная эксплуатация значительного числа аппаратов требует сообщения соответствующими устройствами их внутреннего объема с окружающей средой. Сообщение осуществляется через дыхательные трубы, люки и т.д.

http://texttotext.ru/images/stories/lecture001/image053.gif

Рис. 5. Схема большого дыхания резервуара:

а - до начала заполнения; б - в период заполнения (выдох); 1 - наполнительная линия; 2 - корпус; 3 - дыхательный клапан; 4 - уровень жидкости;

Пары жидкости поступают в атмосферу в результате больших и малых «дыханий» и обратного выдоха.

Большим дыханием называют вытеснение паров наружу (или подсос воздуха внутрь аппаратов) при изменении уровня жидкости в аппаратах.

Малым дыханием называется вытеснение паров наружу (или подсос воздуха внутрь аппаратов), вызываемое изменением температуры газового пространства по влиянием изменения температуры среды.

Обратным выдохом называется вытеснение паров наружу, вызываемое насыщением газового пространства емкости парами жидкости после предшествующего опорожнения емкости.

При выходе паровоздушной смеси из аппарата около него образуется горючая концентрация паров, если температура жидкости равна или больше величины нижнего температурного предела распространения пламени.

Размер наружной опасной зоны зависит от:

  • количества выходящих паров;

  • свойств паров;

  • конструкции емкости и ее дыхательного устройства;

  • состояния окружающей среды (главным образом скорости движения и вертикального распределения температуры воздуха).

Практический интерес вызывает определение:

  • массы паров при большом и малом «дыханиях»;

радиуса зоны взрывоопасных концентраций вокруг мест выброса паров.


написать администратору сайта