Билеты (маленький шрифт). Понятие эвм и ее основных характеристик структура, архитектура
Скачать 434.18 Kb.
|
SIPP (SIP) —модули памяти.Эти модули представляют собой маленькие платы с несколькими напаянными микросхемами DRAM. SIPP является сокращением слов Single Inline Package. SIPP-модули соединяются с системной платой с помощью контактных штырьков. Под контактной колодкой находятся 30 маленьких штырьков (смотри рисунок B.3.3.), которые вставляются в соответствующую панель системной платы Модули SIPP имели определенные вырезы, которые не позволяли вставить их в разъемы неправильным образом. SIMM-модули.Аббревиатура SIMM расшифровывается как Single Inline Memory Module (Модуль памяти с однорядным расположением выводов.) Он включает в себя все то, что для DIP называлось банком. Модули SIMM могут иметь объем 256 Кбайт, 1, 2, 4, 8, 16 и 32 Мбайт. Соединение SIMM-модулей с системной платой осуществляется с помощью колодок. Модуль вставляется в пластмассовую колодку под углом 70 градусов, а потом зажимается пластмассовым держателем. При этом плата встает вертикально. Специальные вырезы на модуле памяти не позволит поставить их неправильным образом. Модули SIMM для соединения с системной платой имеют не штырьки, а позолоченные полоски (так называемые pin, пины). SIMM-модули в своем развитии прошли два этапа. Первыми представителями SIMM-модулей были 30-пиновые SIMM FPM DRAM. Их максимальная частота работы — 29 МГц. Стандартным же временем доступа к памяти считалось 70 нс. DIMMАббревиатура DIMM расшифровывается как Dual Inline Memory Module (Модуль памяти с двойным расположением выводов). В модуле DIMM имеется 168 контактов, которые расположены с двух сторон платы и разделены изолятором. Также изменились и разъемы для DIMM-модулей. Следует отметить, что разъем DIMM имеют много разновидностей DRAM. К тому же вплоть до последнего времени модули DIMM не имели средств самоконфигурирования (в отличие от SIMM-модулей). Поэтому для облегчения выбора нужного модуля пользователям на материнских платах разные типы DIMM имеют от одного до трех вырезов на модуле памяти. Они предотвращают от неправильного выбора и неправильной установки модулей памяти. SDRAM.Аббревиатура SDRAM расшифровывается как Synchronic DRAM (динамическое ОЗУ с синхронным интерфейсом). Этим они отличаются от FPM и EDO DRAM, работающих по асинхронному интерфейсу. С асинхронным интерфейсом процессор должен ожидать, пока DRAM закончит выполнение своих внутренних операций. Они обычно занимают 60 нс. В DRAM с синхронным управлением происходит защелкивание информации от процессора под управлением системных часов. Триггеры запоминают адреса, сигналы управления и данных. Это позволяет процессору выполнять другие задачи. После определенного количества циклов данные становятся доступными, и процессор может их считывать. Таким образом, уменьшается время простоя процессора во время регенерации памяти. Другое преимущество синхронного интерфейса —это то, что системные часы задают временные границы, необходимые DRAM. Это исключает необходимость наличия множества стробирующих импульсов, обязательных для асинхронного интерфейса. Это, во-первых, уменьшает трафик по локальной шине (нет “лишних” сигналов), а во-вторых, позволяет упростить операции ввода-вывода (в операциях пересылки центральный процессор либо контроллер DMA уже не должен выделять полезную информацию среди служебных стробирующих импульсов и битов четности). В-третьих, все операции ввода/вывода на локальной шине стали управляться одними и теми же синхроимпульсами, что само по себе хорошо. Хотя SDRAM появилась уже давно, использование ее тормозилось высокой (на 33%) ценой по сравнению с EDO RAM. “Звездный час” SDRAM настал в 1997 году, после появления чипсета 440BX, работающего на частоте 100 МГц. Вследствие этого доля рынка SDRAM за год выросла в два раза (с 25% в 1997 году до 50% в 1998 году.) В настоящее время выпускаются модули SDRAM, работающие на частотах 100 и 133 МГц. Также разработаны SDRAM на частоты 143 МГц и выше. ESDRAM.Следующим оригинальным решением, увеличившим частоту работы SDRAM, явилось создание кэша SRAM на самом модуле динамического ОЗУ. Так появилась спецификация Enhanced SDRAM (ESDRAM). Это позволило поднять частоту работы модуля до 200 МГц. Назначение кэша на модуле точно такое же, что и кэш второго уровня процессора — хранение наиболее часто используемых данных. SDRAM II.Рис. B.3.7. Модуль памяти DDR DRAM (SDRAM II) Спецификация SDRAM II (или DDR SDRAM) не имеет полной совместимости с SDRAM. Эта спецификация позволяет увеличить частоту работы SDRAM за счет работы на обеих границах тактового сигнала, то есть на подъеме и спаде. Однако SDRAM II использует тот же 168-ми контактный разъем DIMM. SLDRAM.Как и SDRAM II, эта спецификация использует обе границы тактового сигнала и имеет в себе SRAM. Однако благодаря протоколу SynchLink Interface эта память способна работать на частоте до 400 МГц. Память от Rambus (RDRAM, RIMM).Центральные устройства ЭВМ. Принципы организации основной памяти в современных компьютерах. Основная память представляет собой следующий уровень иерархии памяти. Основная память удовлетворяет запросы кэш-памяти и служит в качестве интерфейса ввода/вывода, поскольку является местом назначения для ввода и источником для вывода. Для оценки производительности основной памяти используются два основных параметра: задержка и полоса пропускания. Традиционно задержка основной памяти имеет отношение к кэш-памяти, а полоса пропускания или пропускная способность относится к вводу/выводу. В связи с ростом популярности кэш-памяти второго уровня и увеличением размеров блоков у такой кэш-памяти, полоса пропускания основной памяти становится важной также и для кэш-памяти. Задержка памяти традиционно оценивается двумя параметрами: временем доступа (access time) и длительностью цикла памяти (cycle time). Время доступа представляет собой промежуток времени между выдачей запроса на чтение и моментом поступления запрошенного слова из памяти. Длительность цикла памяти определяется минимальным временем между двумя последовательными обращениями к памяти. Основная память современных компьютеров реализуется на микросхемах статических и динамических ЗУПВ (Запоминающее Устройство с Произвольной Выборкой). Микросхемы статических ЗУВП (СЗУПВ) имеют меньшее время доступа и не требуют циклов регенерации. Микросхемы динамических ЗУПВ (ДЗУПВ) характеризуются большей емкостью и меньшей стоимостью, но требуют схем регенерации и имеют значительно большее время доступа. Увеличение разрядности основной памятиКэш-память первого уровня во многих случаях имеет физическую ширину шин данных соответствующую количеству разрядов в слове, поскольку большинство компьютеров выполняют обращения именно к этой единице информации. В системах без кэш-памяти второго уровня ширина шин данных основной памяти часто соответствует ширине шин данных кэш-памяти. Удвоение или учетверение ширины шин кэш-памяти и основной памяти удваивает или учетверяет соответственно полосу пропускания системы памяти. Реализация более широких шин вызывает необходимость мультиплексирования данных между кэш-памятью и процессором, поскольку основной единицей обработки данных в процессоре все еще остается слово. Память с расслоением. Наличие в системе множества микросхем памяти позволяет использовать потенциальный параллелизм, заложенный в такой организации. Для этого микросхемы памяти часто объединяются в банки или модули, содержащие фиксированное число слов, причем только к одному из этих слов банка возможно обращение в каждый момент времени. Как уже отмечалось, в реальных системах имеющаяся скорость доступа к таким банкам памяти редко оказывается достаточной. Следовательно, чтобы получить большую скорость доступа, нужно осуществлять одновременный доступ ко многим банкам памяти. Одна из общих методик, используемых для этого, называется расслоением памяти.Обобщением идеи расслоения памяти является возможность реализации нескольких независимых обращений, когда несколько контроллеров памяти позволяют банкам памяти (или группам расслоенных банков памяти) работать независимо. Использование специфических свойств динамических ЗУПВКак упоминалось раньше, обращение к ДЗУПВ состоит из двух этапов: обращения к строке и обращения к столбцу. При этом внутри микросхемы осуществляется буферизация битов строки, прежде чем происходит обращение к столбцу. Размер строки обычно является корнем квадратным от емкости кристалла памяти: 1024 бита для 1Мбит, 2048 бит для 4 Мбит и т.д. С целью увеличения производительности все современные микросхемы памяти обеспечивают возможность подачи сигналов синхронизации, которые позволяют выполнять последовательные обращения к буферу без дополнительного времени обращения к строке. Имеются три способа подобной оптимизации: блочный режим (nibble mode) - ДЗУВП может обеспечить выдачу четырех последовательных ячеек для каждого сигнала RAS. страничный режим (page mode) - Буфер работает как статическое ЗУПВ; при изменении адреса столбца возможен доступ к произвольным битам в буфере до тех пор, пока не поступит новое обращение к строке или не наступит время регенерации. режим статического столбца (static column) - Очень похож на страничный режим за исключением того, что не обязательно переключать строб адреса столбца каждый раз для изменения адреса столбца. Центральные устройства ЭВМ. Постоянное запоминающее устройство. Кроме оперативной памяти, под термином "память" мы будем подразумевать постоянную и CMOS - память. К постоянной памяти относят постоянное запоминающее устройство, ПЗУ (в англоязычной литературе - Read Only Memory, ROM, что дословно перводится как "память только для чтения"), перепрограммируемое ПЗУ, ППЗУ (в англоязычной литературе – Programmable Read Only Memory, PROM), и флэш-память (flash memory). Название ПЗУ говорит само за себя. Информация в ПЗУ записывается на заводе-изготовителе микросхем памяти, и в дальнейшем изменить ее значение нельзя. В ПЗУ хранится критически важная для компьютера информация, которая не зависит от выбора операционной системы. Программируемое ПЗУ отличается от обычного тем, что информация на этой микросхеме может стираться специальными методами (например, лучами ультрафиолета), после чего пользователь может повторно записать на нее информацию. Эту информацию будет невозможно удалить до следующей операции стирания информации. |