Понятие искусственный интеллект. Понятие искусственный интеллект (ии или ai) объединяет в себе не только технологии, позволяющие создавать интеллектуальные машины (включая компьютерные программы). Ии это также одно из направлений научной мысли
Скачать 22.04 Kb.
|
Понятие искусственный интеллект (ИИ или AI) объединяет в себе не только технологии, позволяющие создавать интеллектуальные машины (включая компьютерные программы). ИИ – это также одно из направлений научной мысли. Интеллект объединяет в себе все способности человека к познанию действительности. При помощи него человек мыслит, запоминает новую информацию, воспринимает окружающую среду и так далее. Под искусственным интеллектом понимается одно из направлений информационных технологий, которое занимается изучением и разработкой систем (машин), наделенных возможностями человеческого интеллекта: способность к обучению, логическому рассуждению и так далее. В настоящий момент работа над искусственным интеллектом проводится путем создания новых программ и алгоритмов, решающих задачи так же, как это делает человек. Методы машинного обучения для бизнеса В связи с тем, что определение ИИ эволюционирует по мере развития этого направления, необходимо упомянуть AI Effect. Под ним понимается эффект, который создает искусственный интеллект, достигнувший некоторого прогресса. Например, если ИИ научился выполнять какие-либо действия, то сразу подключаются критики, которые доказывают, что эти успехи не свидетельствуют о наличии мышления у машины. Сегодня развитие искусственного интеллекта идет по двум независимым направлениям: нейрокибернетика; логический подход. Первое направление предусматривает исследование нейронных сетей и эволюционных вычислений с точки зрения биологии. Логический подход подразумевает разработку систем, которые имитируют интеллектуальные процессы высокого уровня: мышление, речь и так далее. История развития искусственного интеллекта Первые работы в области ИИ начали вести в середине прошлого века. Пионером исследований в этом направлении стал Алан Тьюринг, хотя определенные идеи начали высказывать философы и математики в Средние века. В частности, еще в начале 20-го века была представлена механическое устройство, способное решать шахматные задачи. Но по-настоящему это направление сформировалось к середине прошлого столетия. Появление работ по ИИ предваряли исследования о природе человека, способах познания окружающего мира, возможностях мыслительного процесса и других сферах. К тому времени появились первые компьютеры и алгоритмы. То есть, был создан фундамент, на котором зародилось новое направление исследований. В 1950 году Алан Тьюринг опубликовал статью, в которой задавался вопросами о возможностях будущих машин, а также о том, способны ли они обойти человека в плане разумности. Именно этот ученый разработал процедуру, названную потом в его честь: тест Тьюринга. После опубликования работ английского ученого появились новые исследования в области ИИ. По мнению Тьюринга, мыслящей может быть признана только та машина, которую невозможно при общении отличить от человека. Примерно в то же время, когда появилась статься ученого, зародилась концепция, получившая название Baby Machine. Она предусматривала поступательное развитие ИИ и создание машин, мыслительные процессы которых сначала формируются на уровне ребенка, а затем постепенно улучшаются. Термин «искусственный интеллект» зародился позднее. В 1956 году группа ученых, включая Тьюринга, собралась в американском университете Дартмунда, чтобы обсудить вопросы, связанные с ИИ. После той встречи началось активное развитие машин с возможностями искусственного интеллекта. Особую роль в создании новых технологий в области ИИ сыграли военные ведомства, которые активно финансировали это направление исследований. Впоследствии работы в области искусственного интеллекта начали привлекать крупные компании. Современная жизнь ставит более сложные задачи перед исследователями. Поэтому развитие ИИ ведется в принципиально других условиях, если сравнивать их с тем, что происходило в период зарождения искусственного интеллекта. Процессы глобализации, действия злоумышленников в цифровой сфере, развитие Интернета и другие проблемы – все это ставит перед учеными сложные задачи, решение которых лежит в области ИИ. Несмотря на успехи, достигнутые в этой сфере в последние годы (например, появление автономной техники), до сих пор не утихают голоса скептиков, которые не верят в создание действительно искусственного интеллекта, а не очень способной программы. Ряд критиков опасается, что активное развитие ИИ вскоре приведет к ситуации, когда машины полностью заменят людей. Направления исследований Философы пока не пришли к единому мнению о том, какова природа человеческого интеллекта, и каков его статус. В связи с этим в научных работах, посвященных ИИ, встречается множество идей, повествующих, какие задачи решает искусственный интеллект. Также отсутствует единое понимание вопроса, какую машину можно считать разумной. Сегодня развитие технологий искусственного интеллекта идет по двум направлениям: Нисходящее (семиотическое). Оно предусматривает разработку новых систем и баз знаний, которые имитируют высокоуровневые психические процессы типа речи, выражения эмоций и мышления. Восходящее (биологическое). Данный подход предполагает проведение исследований в области нейронных сетей, посредством которых создаются модели интеллектуального поведения с точки зрения биологических процессов. На базе этого направления создаются нейрокомпьютеры. Тест Тьюринга Тест Тьюринга определяет способность искусственного интеллекта (машины) мыслить так же, как человек. В общем понимании этот подход предусматривает создание ИИ, поведение которого не отличается от людских действий в одинаковых, нормальных ситуациях. По сути, тест Тьюринга предполагает, что машина будет разумной лишь в том случае, если при общении с ней невозможно понять, кто говорит: механизм или живой человек. Книги в жанре фантастика предлагают другой метод оценки возможностей ИИ. Настоящим искусственный интеллект станет в том случае, если он будет чувствовать и сможет творить. Однако этот подход к определению не выдерживает практического применения. Уже сейчас, например, создаются машины, которые обладают способностью реагировать на изменения окружающей среды (холод, тепло и так далее). При этом они не могут чувствовать так, как это делает человек. Символьный подход Успех в решении задач во многом определяется способностью гибко подходить к ситуации. Машины, в отличие от людей, интерпретируют полученные данные единым образом. Поэтому в решении задач принимает участие только человек. Машина проводит операции на основании написанных алгоритмов, которые исключают применение нескольких моделей абстрагирования. Добиться гибкости от программ удается путем увеличения ресурсов, задействованных в ходе решения задач. Указанные выше недостатки характерны для символьного подхода, применяемого при разработке ИИ. Однако данное направление развития искусственного интеллекта позволяет создавать новые правила в процессе вычисления. А проблемы, возникающие у символьного подхода, способны решить логические методы. Логический подход Этот подход предполагает создание моделей, имитирующих процесс рассуждения. В его основе заложены принципы логики. Данный подход не предусматривает применение жестких алгоритмов, которые приводят к определенному результату. Агентно-ориентированный подход Он задействует интеллектуальных агентов. Этот подход предполагает следующее: интеллект представляет собой вычислительную часть, посредством которой достигаются поставленные цели. Машина играет роль интеллектуального агента. Она познает окружающую среду при помощи специальных датчиков, а взаимодействует с ней посредством механических частей. Агентно-ориентированный подход уделяет основное внимание разработке алгоритмов и методов, которые позволяют машинам сохранять работоспособность в различных ситуациях. Гибридный подход Этот подход предусматривает объединение нейронных и символьных моделей, за счет чего достигается решение всех задач, связанных с процессами мышления и вычислений. Например, нейронные сети могут генерировать направление, в котором двигается работа машины. А статическое обучение предоставляет тот базис, посредством которого решаются задачи. Инвестиционное развитие ИИ Согласно прогнозам экспертов компании Gartner, к началу 2020-х годов практически все выпускаемые программные продукты будут использовать технологии искусственного интеллекта. Также специалисты предполагают, что около 30% инвестиций в цифровую сферу будут приходиться на ИИ. По мнению аналитиков Gartner, искусственный интеллект открывает новые возможности для кооперации людей и машин. При этом процесс вытеснения человека ИИ невозможно остановить и в будущем он будет ускоряться. В компании PwC считают, что к 2030 году объем мирового валового внутреннего продукта вырастет примерно на 14% за счет быстрого внедрения новых технологий. Причем примерно 50% прироста обеспечит повышение эффективности производственных процессов. Вторую половину показателя составит дополнительная прибыль, полученная за счет внедрения ИИ в продукты. Первоначально эффект от использования искусственного интеллекта получит США, так как в этой стране созданы лучшие условия для эксплуатации машин на ИИ. В дальнейшем их опередит Китай, который извлечет максимальную прибыль, внедряя подобные технологии в продукцию и ее производство. Эксперты компании Saleforce заявляют, что ИИ позволит увеличить доходность малого бизнеса примерно на 1,1 триллиона долларов. Причем произойдет это к 2021 году. Отчасти добиться указанного показателя удастся за счет реализации решений, предлагаемых ИИ, в системы, отвечающие за коммуникацию с клиентами. Одновременно с этим будет улучаться эффективность производственных процессов благодаря их автоматизации. Внедрение новых технологий также позволит создать дополнительные 800 тысяч рабочих мест. Эксперты отмечают, что указанный показатель нивелирует потери вакансий, произошедшие из-за автоматизации процессов. По прогнозу аналитиков, основанных на результатах опроса среди компаний, их расходы на автоматизацию производственных процессов к началу 2020-х годов возрастут примерно до 46 миллиардов долларов. В России также ведутся работы в области ИИ. На протяжении 10 лет государство профинансировало более 1,3 тысячи проектов в данной сфере. Причем большая часть инвестиций пошло на развитие программ, не связанных с ведением коммерческой деятельности. Это показывает, что российское бизнес-сообщество пока не заинтересовано во внедрении технологий искусственного интеллекта. В общей сложности на указанные цели в России инвестировали порядка 23 миллиардов рублей. Размер государственных субсидий уступает тем объемам финансирования сферы ИИ, которые демонстрируют другие страны. В США на эти цели каждый год выделяют порядка 200 миллионов долларов. В основном в России из госбюджета выделяют средства на развитие технологий ИИ, которые затем применяются в транспортной сфере, оборонной промышленности и в проектах, связанных с обеспечением безопасности. Это обстоятельство указывает на то, что в нашей стране чаще инвестируют в направления, которые позволяют быстро добиться определенного эффекта от вложенных средств. Приведенное выше исследование также показало, что в России сейчас накоплен высокий потенциал для подготовки специалистов, которые могут быть задействованы в разработке технологий ИИ. За 5 последних лет обучение по направлениям, связанным с ИИ, прошли примерно 200 тысяч человек. В каком направлении развивается ИИ? Перспективы развития искусственного интеллекта Технологии ИИ развиваются в следующих направлениях: решение задач, позволяющих приблизить возможности ИИ к человеческим и найти способы их интеграции в повседневность; разработка полноценного разума, посредством которого будут решаться задачи, стоящие перед человечеством. В настоящий момент исследователи сосредоточены на разработке технологий, которые решают практические задачи. Пока ученые не приблизились к созданию полноценного искусственного разума. Разработкой технологиями в области ИИ занимаются многие компании. «Яндекс» не один год применяет их в работе поисковика. С 2016 года российская IT-компания занимается исследованиями в области нейронных сетей. Последние изменяют характер работы поисковиков. В частности, нейронные сети сопоставляют введенный пользователем запрос с неким векторным числом, который наиболее полно отражает смысл поставленной задачи. Иными словами, поиск ведется не по слову, а именно по сути информации, запрашиваемой человеком. В 2016 году «Яндекс» запустил сервис «Дзен», который анализирует предпочтения пользователей. У компании Abbyy недавно появилась система Compreno. При помощи нее удается понять на естественном языке написанный текст. На рынок также сравнительно недавно вышли и другие системы, основанные на технологиях искусственного интеллекта: Findo. Система способна распознавать человеческую речь и занимается поиском информации в различных документах и файлах, используя при этом сложные запросы. Gamalon. Эта компания представила систему со способностью к самообучению. Watson. Компьютер компании IBM, использующий в процессе поиска информации большое количество алгоритмов. ViaVoice. Система распознавания человеческой речи. Крупные коммерческие компании не обходят стороной достижения в области искусственного интеллекта. Банки активно внедряют подобные технологии в свою деятельность. При помощи систем, основанных на ИИ, они проводят операции на биржах, ведут управление собственностью и выполняют иные операции. Оборонная промышленность, медицина и другие сферы внедряют технологии распознавания объектов. А компании, занимающие разработкой компьютерных игр, применяют ИИ для создания очередного продукта. Big Data — что такое системы больших данных? Развитие технологий Big Data Технологии распознавания объектов В течение нескольких последних лет группа американских ученых ведет работу над проектом NEIL, в рамках которого исследователи предлагают компьютеру распознать, что изображено на фотографии. Специалисты предполагают, что таким образом они смогут создать систему, способную самообучаться без внешнего вмешательства. Компания VisionLab представила собственную платформу LUNA, которая может в режиме реального времени распознавать лица, выбирая их из огромного кластера изображений и видеороликов. Данную технологию сегодня применяют крупные банки и сетевые ретейлеры. При помощи LUNA можно сопоставлять предпочтения людей и предлагать им соответствующие товары и услуги. Над подобными технологиями работает российская компания N-Tech Lab. При этом ее специалисты питаются создать систему распознавания лиц, основанную на нейронных сетях. По последним данным, российская разработка лучше справляется с поставленными задачами, чем человек. Как ИИ влияет на человечество? По мнению Стивена Хокинга, развитие технологий искусственного интеллекта в будущем приведет к гибели человечества. Ученый отметил, что люди из-за внедрения ИИ начнут постепенно деградировать. А в условиях естественной эволюции, когда человеку для выживания необходимо постоянно бороться, этот процесс неминуемо приведет к его гибели. В России положительно рассматривают вопрос внедрения ИИ. Алексей Кудрин однажды заявил о том, что использование таких технологий позволит примерно на 0,3% от ВПП уменьшить расходы на обеспечение работы государственного аппарата. Дмитрий Медведев предрекает исчезновение ряда профессий из-за внедрения ИИ. Однако чиновник подчеркнул, что использование таких технологий приведет к бурному развитию других отраслей. По данным экспертов Всемирного экономического форума, к началу 2020-х годов в мире из-за автоматизации производства рабочих мест лишаться около 7 миллионов человек. Внедрение ИИ с высокой долей вероятности вызовет трансформацию экономики и исчезновение ряда профессий, связанных с обработкой данных. Эксперты McKinsey заявляют, что активнее процесс автоматизации производства будет проходить в России, Китае и Индии. В этих странах в ближайшее время до 50% рабочих потеряют свои местах из-за внедрения ИИ. Их место займут компьютеризированные системы и роботы. По данным McKinsey, искусственный интеллект заменит собой профессии, предусматривающие физический труд и обработку информации: розничная торговля, гостиничный персонал и так далее. К середине текущего столетия, как полагают эксперты американской компании, число рабочих мест во всем мире сократится примерно на 50%. Места людей займут машины, способные проводить аналогичные операции с той же или более высокой эффективностью. При этом эксперты не исключают варианта, при котором данный прогноз будет реализован раньше указанного срока. Другие аналитики отмечают вред, который могут нанести роботы. Например, эксперты McKinsey обращают внимание на то, что роботы, в отличие от людей, не платят налоги. В результате из-за снижения объемов поступлений в бюджет государство не сможет поддерживать инфраструктуру на прежнем уровне. Поэтому Билл Гейтс предложил ввести новый налог на роботизированную технику. Технологии ИИ повышают эффективность работы компаний за счет снижения числа совершаемых ошибок. Кроме того, они позволяют повысить скорость выполнения операций до того уровня, который не может достигнуть человек. Гносеологический «оптимизм» и агностицизм: их основные аргументы. Гносеологический оптимизм– направление в гносеологии, настаивающее на безграничных возможностях познавательных способностей человека, полагающее, что нет принципиальных препятствий на пути познания человеком окружающего мира, сущности объектов и самого себя. Сторонники данного направления настаивают на существовании объективной истины и способности человека достичь ее. Имеются, конечно, определенные трудности исторического, т.е. – временного характера, но развивающееся человечество, в конце концов, их преодолеет. Вариантов оптимистической гносеологии достаточно много, различаются и их онтологические основания. В учении Платона возможность безусловного познания сущности вещей базируется на постулировании единой природы души и идеальных сущностей в некоем месте обитания занебесной области, в которой души созерцают идеальный мир. После вселения в человеческие тела души забывают то, что они видели в иной действительности. Суть же теории познания Платона заключается в тезисе «Знание – это припоминание», то есть души припоминают то, что видели прежде, но забыли в земном существовании. Способствуют процессу «припоминания» наводящие вопросы, вещи, ситуации. В учениях Г.Гегеля и К.Маркса, несмотря на то, что первое принадлежит к объективно-идеалистическому, а второе – к материалистическому направлениям, онтологической основой гносеологического оптимизма является представление о рациональности (т.е. логичности, закономерности) мира. Рациональность мира безусловно может быть познана человеческой рациональностью, то есть разумом. |