Главная страница
Навигация по странице:

  • Электролитный состав плазмы крови. Осмотическое давление крови. Функциональная система, обеспечивающая постоянство осмотического давления крови.

  • 3 Функциональная система, поддерживающая постоянство кислотно-основного равновесия.

  • 4.Белки плазмы крови, их характеристика и функциональное значение. Онкотическое давление крови и его роль.

  • 5. Характеристика форменных элементов крови (эритроциты, лейкоциты, тромбоциты), их роль в организме.

  • Модуль 4. Понятие о крови, ее свойствах и функциях. Состав крови. Основные физиологические константы крови и механизмы их поддержания


    Скачать 300.54 Kb.
    НазваниеПонятие о крови, ее свойствах и функциях. Состав крови. Основные физиологические константы крови и механизмы их поддержания
    Дата02.06.2018
    Размер300.54 Kb.
    Формат файлаdocx
    Имя файлаМодуль 4.docx
    ТипДокументы
    #45753
    страница1 из 6
      1   2   3   4   5   6

    1. Понятие о крови, ее свойствах и функциях. Состав крови. Основные физиологические константы крови и механизмы их поддержания.

    Ланг считал, что в систему крови входят кровь, органы кроветворения и кроверазрушения, а также аппарат регуляции. Кровь как ткань обладает следующими особенностями: 1) все ее составные части образуются за пределами сосудистого русла; 2) межклеточное вещество ткани является жидким; 3) основная часть крови находится в постоянном движении

    Кровь состоит из жидкой части — плазмы и форменных элементов — эритроцитов, лейкоцитов и тромбоцитов. У взрослого человека форменные элементы крови составляют около 40—48%, а плазма — 52—60.

    Основными функциями:1Транспортная функция. Кровь переносит необходимые для жизнедеятельности органов и тканей различные вещества, газы и продукты обмена Благодаря транспорту осуществляется дыхательная функция крови. Кровь осуществляет перенос гормонов, питательных веществ, продуктов обмена, ферментов, различных биологически активных веществ, солей, кислот, щелочей, катионов, анионов, микроэлементов и др. С транспортом связана и экскреторная функция крови — выделение из организма метаболитов, отслуживших свой срок или находящихся в данный момент в избытке веществ.2 Защитные функции. С наличием в крови лейкоцитов связана специфическая (иммунитет) и неспецифическая (главным образом фагоцитоз) защита организма. К защитным функциям относится сохранение циркулирующей крови в жидком состоянии и остановка кровотечения (гемостаз) в случае нарушения целостности сосудов.3Гуморальная регуляция деятельности организма. В первую очередь связана с поступлением в циркулирующую кровь гормонов, биологически активных веществ и продуктов обмена. Благодаря регуляторной функции крови осуществляется сохранение постоянства внутренней среды организма, водного и солевого баланса тканей и температуры тела, контроль за интенсивностью обменных процессов, регуляция гемопоэза и других физиологических функций.

    Основные константы крови:1Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относительная плотность плазмы крови в основном определяется концентрацией белков и составляет 1,029—1,032 . 2 Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы.. Вязкость плазмы не превышает 1,8—2,2. При обильном белковом питании вязкость плазмы, а, следовательно, и крови может повышаться. 3. Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор 0,56—0,58°С. 4Онкотическое давление.не превышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов. 5.Температура крови37—40°С 6.Общее количество крови в организме взрослого человека составляет в среднем 6—8%, или 1/13, массы тела, т. е. приблизительно 5—6 л.

    1. Электролитный состав плазмы крови. Осмотическое давление крови. Функциональная система, обеспечивающая постоянство осмотического давления крови.

    В состав плазмы крови входят вода (90—92%) и сухой остаток (8—10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся: 1) белки плазмы — альбумины (около 4,5%), глобулины (2—3,5%), фибриноген (0,2—0,4%). Общее количество белка в плазме составляет 7—8%;2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество небелкового азота в плазме (так называемого остаточного азота) составляет 11 —15 ммоль/л (30—40 мг%). При нарушении функции почек, выделяющих шлаки из организма, содержание остаточного азота в крови резко возрастает;3) безазотистые органические вещества: глюкоза — 4,4—6,65 ммоль/л (80—120 мг%), нейтральные жиры, липиды;4) ферменты и проферменты: некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др.Неорганические вещества плазмы крови составляют около 1 % от ее состава. К этим веществам относятся преимущественно катионы — Ка+, Са2+, К+, Мg2+ и анионы Сl, НРO4, НСО3

    Осмотическое давление крови. Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор. Осмотическое давление крови вычисляют криоскопическим методом с помощью определения депрессии (точки замерзания), которая для крови составляет 0,56—0,58°С. Депрессия молярного раствора (раствор, в котором растворена 1 грамм-молекула вещества в 1 л воды) соответствует 1,86°С. Подставив значения в уравнение Клапейрона, легко рассчитать, что осмотическое давление крови равно приблизительно 7,6 атм.

    Осмотическое давление крови зависит в основном от растворенных в ней низкомолекулярных соединений, главным образом солей. Около 60% этого давления создается NaCl. Осмотическое давление в крови, лимфе, тканевой жидкости, тканях приблизительно одинаково и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает существенных изменений. При избыточном поступлении в кровь вода быстро выводится почками и переходит в ткани и клетки, что восстанавливает исходную величину осмотического давления. Если же в крови повышается концентрация солей, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соли. Продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма могут изменять осмотическое давление в небольших пределах.

    3 Функциональная система, поддерживающая постоянство кислотно-основного равновесия.

    Кисло́тно-осно́вное равнове́сие— относительное постоянство соотношения кислота-основание внутренней среды живого организма. Также называюткисло́тно-щелочно́е равнове́сие,кислотно-щелочной баланс,равновесие кислот и оснований. Является составной частьюгомеостаза. Количественно характеризуется либо концентрацией водородных ионов (протонов) в молях на 1 л, либо водородным показателемpH.

    Механизм

    Ткани живого организма весьма чувствительны к колебаниям показателя pH — за пределами допустимого диапазона (7,37—7,44), происходит денатурация белков: разрушаются клетки, ферменты теряют способность выполнять свои функции, возможна гибель организма. Поэтому кисло́тно-щелочно́й баланс в организме жёстко регулируется. Существует несколько буферных систем, которые обратимо связывают ионы водорода и препятствуют каким-либо изменениям показателя рН. Бикарбонатная буферная система (мощная и наиболее управляемая среди буферных систем) имеет особо важное значение: избыток протонов (H+, ионов водорода) взаимодействует с ионами бикарбоната (HCO3−) с образованием угольной кислоты (H2CO3). В дальнейшем уменьшение количества угольной кислоты происходит в результате ускоренного выделения углекислого газа (CO2) в результате гипервентиляции лёгких (концентрация определяется давлением в альвеолярной газовой смеси)

    4.Белки плазмы крови, их характеристика и функциональное значение. Онкотическое давление крови и его роль.

    Белки составляют 7–8 % от сухого остатка (что составляет 67–75 г/л) и выполняют ряд функций. Они отличаются по строению, молекулярной массе, содержанию различных веществ. При увеличении концентрации белков возникает гиперпротеинемия, при уменьшении – гипопротеинемия, при появлении патологических белков – парапротеинемия, при изменении их соотношения – диспротеинемия. В норме в плазме присутствуют альбумины и глобулины. Их соотношение определяется белковым коэффициентом, который равняется 1,5–2,0.

    Альбумины – мелкодисперсные белки, молекулярная масса которых 70 000—80 000 Д. В плазме их содержится около 50–60 %, что составляет 37–41 г/л. В организме они выполняются следующие функции:

    1. являются депо аминокислот;

    2. обеспечивают суспензионное свойство крови, поскольку являются гидрофильными белками и удерживают воду;

    3. участвуют в поддержании коллоидных свойств за счет способности удерживать воду в кровеносном русле;

    4. транспортируют гормоны, неэтерефицированные жирные кислоты, неорганические вещества и т. д.

    При недостатке альбуминов возникает отек тканей (вплоть до гибели организма).

    Глобулины – крупнодисперсные молекулы, молекулярная масса которых более 100 000 Д. Их концентрация колеблется в пределах 30–35 %, что составляет около 30–34 г/л. При электрофорезе глобулины распадаются на несколько видов: β1– глобулины, β2-глобулины, β-глобулины, γ-глобулины.

    Функции глобулинов:

    1. Защитная. Связана с наличием иммуноглобулинов – антител, способных связывать антигены. Также они входят в состав защитных систем организма, такие как – системы пропердина и комплемента, обеспечивая неспецифическую резистентность организма. Участвуют в процессах свертывания крови за счет наличия фибриногена, занимающего промежуточное положение между β-глобулинами и γ-глобулинами, являющимися источником фибриновых нитей. Образуют в организме систему фибринолиза, основным компонентом которой является плазминоген.

    2. Транспортная. Связана с переносом металлов с помощью гаптоглобина и церулоплазмина. Гаптоглобин относится к β2-глобулинам и образует комплекс с трансферрином, сохраняющим для организма железо. Церулоплазмин является β2-глобулином, который способен соединять медь.

    3. Патологическая. Патологические глобулины образуются в ходе воспалительных реакций, поэтому в норме не обнаруживаются. К ним относятся интерферон (образуется при внедрении вирусов), С-реактивный белок, или белок острой фазы (является β-глобулином и присутствует в плазме при тяжелых, хронических заболеваниях).

    Функции белков плазмы крови:

    1. обеспечивают онкотическое давление крови, от которого в значительной степени зависит обмен воды и растворенных в ней веществ между кровью и тканевой жидкостью;

    2. регулируют рН крови благодаря наличию буферных свойств;

    3. влияют на вязкость крови и плазмы, что чрезвычайно важно для поддержания нормального уровня кровяного давления;

    4. обеспечивают гуморальный иммунитет, ибо являются антителами (иммуноглобулинами);

    5. принимают участие в свертывании крови;

    6. способствуют сохранению жидкого состояния крови, так как входят в состав противосвертывающих веществ, именуемых естественными антикоагулянтами;

    7. служат переносчиками рада гормонов, липидов, минеральных веществ и др.;

    8. обеспечивают процессы репарации, роста и развития различных клеток организма.

    Онкотическое давление является частью осмотического и зависит от содержания крупномолекулярных соединений (белков) в растворе.Хотя концентрация белков в плазме довольно велика, общее количество молекул из-за их большой молекулярной массы относительно мало, благодаря чему онкотическое давление не превышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов (80% онкотического давления создают альбумины), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме.

    Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике.

    При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

    5. Характеристика форменных элементов крови (эритроциты, лейкоциты, тромбоциты), их роль в организме.

    Эритроциты – красные кровяные тельца, содержащие дыхательный пигмент – гемоглобин. Эти безъядерные клетки образуются в красном костном мозге, а разрушаются в селезенке. В зависимости от размеров делятся на нормоциты, микроциты и макроциты. Примерно 85 % всех клеток имеет форму двояковогнутого диска или линзы с диаметром 7,2–7,5 мкм. Такая структура обусловлена наличием в цитоскелете белка спектрина и оптимальным соотношением холестерина и лецитина. Благодаря данной форме эритроцит способен переносить дыхательные газы – кислород и углекислый газ.

    Функции эритроцитов:

    1. дыхательная (связана с наличием гемоглобина и бикарбоната калия, за счет которых осуществляется перенос дыхательных газов);

    2. питательная (связана со способностью мембраны клеток адсорбировать аминокислоты и липиды, которые с током крови транспортируются от кишечника к тканям);

    3. ферментативная (обусловлена присутствием на мембране карбоангидразы, метгемоглобинредуктазы, глютатионредуктазы, пероксидазы, истинной холинэстеразы);

    4. защитная (осуществляется в результате оседания токсинов микробов и антител, а также за счет присутствия факторов свертывания крови и фибринолиза);

    5. буферная.

    Поскольку эритроциты содержат антигены, то их используют в иммунологических реакциях для выявления антител в крови.

    Эритроциты являются самыми многочисленными форменными элементами крови. Так, у мужчин в норме содержится 4,5–5,5 × 1012/л, а у женщин – 3,7–4,7 × 1012/л. Однако количество форменных элементов крови изменчиво (их увеличение называется эритроцитозом, а при уменьшение – эритропенией).

    Эритроциты обладают физиологическими и физико-химическими свойствами:

    1. Пластичностью. Пластичность во многом обусловлена строением цитоскелета, в котором очень важным является соотношение фосфолипидов и холестерина. Это соотношение выражается в виде липолитического коэффициента и в норме составляет 0,9. Пластичность эритроцитов – способность к обратимой деформации при прохождении через узкие капилляры и микропоры. При снижении количества холестерина в мембране наблюдается снижение стойкости эритроцитов.

    2. Осмотической стойкостью (эритроциты способны противостоять разрушительному осмотическому воздействию).

    3. Наличием креаторных связей, благодаря которым эритроциты являются идеальным переносчиками, транспортируют различные вещества и осуществляют межклеточное взаимодействие.

    4. Способностью к оседанию. Способность к оседанию обусловлена удельным весом клеток, который выше, чем все плазмы крови. В норме она невысока и связана с наличием белков альбуминовой фракции, которые способны удерживать гидратную оболочку эритроцитов. Глобулины являются лиофобными коллоидами, которые препятствуют образованию гидратной оболочки. Соотношение альбуминовой и глобулиновой фракций крови (белковый коэффициент) определяет скорость оседания эритроцитов. В норме он составляет 1,5–1,7.

    5. Агрегацией. Агрегация наблюдается при уменьшении скорости кровотока и увеличении вязкости. При быстрой агрегации образуются «монетные столбики» – ложные агрегаты, которые распадаются на полноценные клетки с сохраненной мембраной и внутриклеточной структурой. При длительном нарушении кровотока появляются истинные агреганты, вызывающие образование микротромба.

    6. Деструкцией. Деструкция (разрушение эритроцитов) происходит через 120 дней в результате физиологического старения. Оно характеризуется:

    • постепенным уменьшением содержания липидов и воды в мембране;

    • увеличенным выходом ионов K и Na;

    • преобладанием метаболических сдвигов;

    • ухудшением способности к восстановлению метгемоглобина в гемоглобин;

    • понижением осмотической стойкости, приводящей к гемолизу.

    Стареющие эритроциты за счет понижения способности к деформации застревают в миллипоровых фильтрах селезенки, где поглощаются фагоцитами. Около 10 % клеток подвергаются разрушению в сосудистом русле.

    Лейкоциты – ядросодержащие клетки крови, размеры которых от 4 до 20 мкм. Продолжительность их жизни сильно варьируется и составляет от 4–5 до 20 дней для гранулоцитов и до 100 дней для лимфоцитов. Количество лейкоцитов в норме у мужчин и женщин одинаково и составляет 4–9 × 109/л. Однако уровень клеток в крови непостоянен и подвержен суточными и сезонным колебаниям в соответствии с изменением интенсивности обменных процессов.

    Лейкоциты делятся на две группы: гранулоциты (зернистые) и агранулоциты.

    Среди гранулоцитов в периферической крови встречаются:

    • нейтрофилы – 46–76 %;

    • эозинофилы – 1–5 %;

    • базофилы – 0–1 %.

    В группе незернистых клеток выделяют:

    • моноциты – 2—10 %;

    • лимфоциты – 18–40 %.

    Процентное содержание лейкоцитов в периферической крови называется лейкоцитарной формулой, сдвиги которой в разные стороны свидетельствуют о патологических процессах, протекающих в организме. Различают сдвиг вправо – понижение функции красного костного мозга, сопровождающееся увеличением количества старых форм нейтрофильных лейкоцитов. Сдвиг влево является следствием усиления функций красного костного мозга, в крови увеличивается количество молодых форм лейкоцитов. В норме соотношение между молодыми и старыми формами лейкоцитов составляет 0,065 и называется индексом регенерации. За счет наличия ряда физиологических особенностей лейкоциты способны выполнять множество функций. Важнейшими из свойств являются амебовидная подвижность, миграция (способность проникать через стенку неповрежденных сосудов), фагоцитоз.

    Лейкоциты выполняют в организме защитную, деструктивную, регенеративную, ферментативную функции.

    Защитное свойство связано с бактерицидным и антитоксическим действием агранулоцитов, участием в процессах свертывания крови и фибринолиза.

    Деструктивное действие заключается в фагоцитозе отмирающих клеток.

    Регенеративная активность способствует заживлению ран.

    Ферментативная роль связана с наличием ряда ферментов.

    Иммунитет – способность организма защищаться от генетически чужеродных веществ и тел. В зависимости от происхождения может быть наследственным и приобретенным. Он основан на выработке антител на действие антигенов. Выделяют клеточное и гуморальное звенья иммунитета. Клеточный иммунитет обеспечивается активностью Т-лимфоцитов, а гуморальный – В-лимфоцитов.

    Тромбоциты – безъядерные клетки крови, диаметром 1,5–3,5 мкм. Они имеют уплощенную форму, и их количество у мужчин и женщин одинаково и составляет 180–320 × 109/л. Эти клетки образуются в красном костном мозге путем отшнуровывания от мегакариоцитов.

    Тромбоцит содержит две зоны: гранулу (центр, в котором находятся гликоген, факторы свертывания крови и т. д.) и гиаломер (периферическую часть, состоящую из эндоплазматического ретикулума и ионов Ca).

    Мембрана построена из бислоя и богата рецепторами. Рецепторы по функции делятся на специфические и интегрированные. Специфические способны взаимодействовать с различными веществами, за счет чего запускаются механизмы, аналогичные действию гормонов. Интегрированные обеспечивают взаимодействие между тромбоцитами и эндотелиоцитами.

    Для тромбоцитов характерны следующие свойства:

    1. амебовидная подвижность;

    2. быстрая разрушаемость;

    3. способность к фагоцитозу;

    4. способность к адгезии;

    5. способность к агрегации.

    Функции тробоцитов:

    1. Трофическая функция заключается в обеспечении сосудистой стенки питательными веществами, за счет которых сосуды становятся более упругими.

    2. Регуляция сосудистого тонуса достигается благодаря наличию биологического вещества – серотонина, вызывающего сокращения гладкомышечных клеток. Трамбоксан А2 (производный арахидоновой кислоты) обеспечивает наступление сосудосуживающего эффекта за счет снижения сосудистого тонуса.

    3. Тромбоцит принимает активное участие в процессах свертывания крови за счет содержания в гранулах тромбоцитарных факторов, которые образуются либо в тромбоцитах, либо адсорбируются в плазме крови.

    4. Динамическая функция заключается в процессах адгезии и агрегации тромбов. Адгезия – процесс пассивный, протекающий без затраты энергии. Тромб начинает прилипать к поверхности сосудов за счет интергиновых рецепторов к коллагену и при повреждении выделяется на поверхность к фибронектину. Агрегация происходит параллельно адгезии и протекает с затратой энергии. Поэтому главным фактором является наличие АДФ. При взаимодействии АДФ с рецепторами начинается активация J-белка на внутренней мембране, что вызывает активацию фосфолипаз А и С. Фосфолипаза а способствует образованию из арахидоновой кислоты тромбоксана А2 (агреганта). Фосфолипаза с способствует образованию иназитолтрифосфата и диацилглецерола. В результате активируется протеинкиназа С, повышается проницаемость для ионов Ca. В результате из эндоплазматического ретикулума они поступают в цитоплазму, где Ca активирует кальмодулин, который активирует кальцийзависимую протеинкиназу.
      1   2   3   4   5   6


    написать администратору сайта