учебный курс по математике. 1 у.мат. Понятие текстовая задача. Структура задачи
Скачать 16.54 Kb.
|
Понятие «текстовая задача». Структура задачи. 1. С термином «задача» люди постоянно сталкиваются в повседневной жизни как на бытовом, так и на профессиональном уровне. Каждому из нас приходится решать те или иные проблемы, которые зачастую мы называем задачами. Это могут быть общегосударственные задачи (освоение космоса, воспитание подрастающего поколения, оборона страны и т. п.), задачи определенных коллективов и групп (сооружение объектов, выпуск литературы, установление связей и зависимостей и др.), а также задачи, которые стоят перед отдельными личностями. Проблема решения и чисто математических задач, и задач, возникающих перед человеком в процессе его производственной или бытовой деятельности, изучается издавна, однако до настоящего времени нет общепринятой трактовки самого понятия «задача». В шиpoком смысле слова под задачей понимается некоторая ситуация, требующая исследования и разрешения человеком (или решающей системой). Отдельно стоят математические задачи, решение которых достигается специальными математическими средствами и методами. Среди них выделяют задачи научные (например, теорема Ферма, проблема Гольбаха и др.), решение которых способствует развитию математики и ее приложений, и задачи учебные, которые служат для формирования необходимых математических знаний, умений и навыков у разных групп обучаемых (школьников, слушателей курсов, студентов и др.) и направлены на изменение качеств личности обучаемого (не знал – знаю, не умел – умею и т. п.). Учебные математические задачи различаются по характеру их объектов. В одних задачах все объекты математические (числа, геометрические фигуры, функции и т. п.), в других объектами являются реальные предметы (люди, животные, автотранспортные и механические средства, сплавы, жидкости и т.д.) или их свойства и характеристики (количество, возраст, скорость, производительность, длина, масса и т. п.). Задачи, все объекты которых математические (доказательства теорем, вычислительные упражнения, установление признаков изучаемого математического понятия и т. д.), часто называют математическими заданиями. Математические задачи, в которых есть хотя бы один объект, являющийся реальным предметом, принято называть текстовыми (сюжетными, практическими, арифметическими и т. д.). Перечисленные названия берут начало от способа записи (задача представлена в виде текста), сюжета (описываются реальные объекты, явления, события), характера математических выкладок (устанавливаются количественные отношения между значениями некоторых величин, связанные чаще всего с вычислениями). В последнее время наиболее распространенным является термин «текстовая задача». Текстовой задачей будем называть описание некоторой ситуации (явления, процесса) на естественном и (или) математическом языке с требованием либо дать количественную характеристику какого-то компонента этой ситуации (определить числовое значение некоторой величины по известным числовым значениям других величин и зависимостям между ними), либо установить наличие или отсутствие некоторого отношения между ее компонентами или определить вид этого отношения, либо найти последовательность требуемых действий. Придерживаясь современной терминологии, можно сказать, что текстовая задача представляет собой словесную модель ситуации, явления, события, процесса и т. п. Как в любой модели, в текстовой задаче описывается не все событие или явление, а лишь его количественные и функциональные характеристики. Основная особенность текстовых задач состоит в том, что в них не указывается прямо, какое именно действие (или действия) должно быть выполнено для получения ответа на требование задачи. В каждой задаче можно выделить: а) числовые значения величин, которые называются данными, или известными (их должно быть не меньше двух); б) некоторую систему функциональных зависимостей в неявной форме, взаимно связывающих искомое с данными и данные между собой (словесный материал, указывающий на характер связей между данными и искомыми); в) требование или вопрос, на который надо найти ответ. Числовые значения величин и существующие между ними зависимости, то есть количественные и качественные характеристики объектов задачи и отношений между ними, называют условием (или условиями) задачи. В задаче обычно не одно, а несколько условий, которые называют элементарными. Требования могут быть сформулированы как в вопросительной, так и в повествовательной форме, их также может быть несколько. Величину, значение которой требуется найти, называют искомой величиной, а числовые значения искомых величин – искомыми, или неизвестными. Систему взаимосвязанных условий и требований называют высказывательной моделью задачи. Для того чтобы уяснить структуру задачи, надо выявить ее условия и требования, то есть построить высказывательную модель задачи. Ответ на требование задачи получается в результате ее решения. Решить задачу в широком смысле этого слова – это значит раскрыть связи между данными, заданными условием задачи, и искомыми величинами, определить последовательность применения общих положений математики (правил, законов, формул и т. п.), выполнить действия над данными задачи, используя общие положения, и получить ответ на требование задачи или доказать невозможность его выполнения. Термин «решение задачи» широко применяется в математике. Этим термином обозначают связанные между собой, но все же неодинаковые понятия: 1) решением задачи называют результат, то есть ответ на требование задачи; 2)решением задачи называют процесс нахождения этого результата, то есть вся деятельность человека, решающего задачу, с момента начала чтения задачи до окончания решения; 3) решением задачи называют лишь те действия, которые производят над условиями и их следствиями на основе общих положений математики для получения ответа задачи. В дальнейшем мы не будем придерживаться какого-то одного значения этого термина и не станем пояснять, что мы имеем в виду в той или иной ситуации. В каждом конкретном случае будет ясно, о каком толковании термина «решение задачи» идет речь. |