Главная страница
Навигация по странице:

  • Понятие о мутационной изменчивости. Мутации в зависимости от места возникновения (соматические, генеративные), значение. Примеры, основные положения мутационной теории.

  • Мутации в зависимости от причины возникновения (спонтанные,индуцированные), значение, примеры. Мутагенные факторы. Канцерогенез.

  • Мутации на хромосомной уровне организации наследственного материала. Хромосомные аберрации, их значение для биологии и медицины.

  • Цитоплазматическая наследственность. Наследственность и среда.

  • Мутации на генном и геномном уровне организации наследственного материала. Значение медицине, примеры.

  • .Генетика человека как наука, и предмет ее изучения, задачи. Человек как специфический объект генетических исследований.

  • Методы изучения генетики человека: генеалогический, близнецовый, биохимический. Примеры

  • Методы генетики человека, изучающие хромосомные болезни: цитогенетиечский, дерматоглифический. Примеры

  • Предмет и задачи генетики


    Скачать 273.6 Kb.
    НазваниеПредмет и задачи генетики
    Дата25.03.2022
    Размер273.6 Kb.
    Формат файлаdocx
    Имя файла3_0_Kollokvium_3_otvety.docx
    ТипДокументы
    #416801
    страница3 из 4
    1   2   3   4
    Изменчивость и ее формы. Понятие о фенотипической изменчивости. Фенокопия. Изменчивость  это универсальное свойство живых организмов приобретать новые признаки под действием среды (как внешней, так и внутренней). Выделяют два типа изменчивости: ненаследственную (модификационную, фенотипическую) и наследственную (генотипическую). Модификационная (фенотипическая) изменчивость заключается в том, что под действием разных условий внешней среды у организмов одного вида, генотипически одинаковых, наблюдается изменение признаков (фенотипа). Изменения эти индивидуальны и не наследуются, т. е. не передаются особям следующих поколений.  Фенокопии — изменения фенотипа под влиянием неблагоприятных факторов среды, по проявлению похожие на мутации. В медицине фенокопии  ненаследственные болезни, сходные с наследственными.



    22.Понятие о мутационной изменчивости. Мутации в зависимости от места возникновения (соматические, генеративные), значение. Примеры, основные положения мутационной теории. Термин «мутация» впервые был введен в генетику Гуго де Фризом (1901 г.), голландским ботаником. Мутациейон назвал явление скачкообразного, внезапного изменения наследственного признака. Выделяют три формы мутационной изменчивости:1)  генные мутации, когда происходят изменения в самих генах — в составе и последовательности нуклеотидов; 2) хромосомные мутации: изменения осуществляются на уровне хромосомы — утрата (отрыв и потеря) ее участка, присоединение к хромосоме участка, оторвавшегося от другого, и т. д.; 3)геномные мутации— изменения в числе хромосом у данного организма: либо в кратное число раз гаплоидному набору хромосом — 3n, 4n, 5nи т. д. — это полиплоидия, либо на одну или несколько хромосом в наборе — (2n+ 1), (2n– 1), (2n+ 2), (2n– 2) и т. д. — гетероплоидия(рис. 3 и 4). В зависимости от места возникновения мутации бывают генеративными (возникают в половых клетках и проявляются в следующих поколениях) и соматическими (возникают у данного организма, не передаются по наследству при половом размножении и передаются при бесполом). Основные положения мутационной теории Г. Де Фриза сводятся к следующему:1) Мутации возникают внезапно как дискретные изменения признаков.2) Новые формы устойчивы. 3) В отличие от ненаследственных изменений мутации не образуют непрерывных рядов, не группируются вокруг какого-либо среднего типа. Они представляют собой качественные изменения.4) Мутации проявляются по-разному и могут быть как полезными, так и вредными. 5)Вероятность обнаружения мутации зависит от числа исследованных особей. 6)Сходные мутации могут возникать неоднократно.

    23.Мутации в зависимости от причины возникновения (спонтанные,индуцированные), значение, примеры. Мутагенные факторы. Канцерогенез. Любые мутации могут возникнуть спонтанно или быть индуцированными. Спонтанные мутации появляются под влиянием неизвестных природных факторов и приводят к ошибкам при репликации ДНК. Индуцированные мутации возникают под воздействием специальных направленных факторов, повышающих мутационный процесс. Мутагенным действием обладают факторы физической, химической и биологической природы. Мутагенные факторы среды - факторы, вызывающие появление мутаций.  Мутагенным действием обладают факторы физической, химической и биологической природы. Среди физических мутагенов наиболее сильное мутантное действие оказывает ионизирующая радиация – рентгеновские лучи, α-, β-, γ-лучи. Обладая большой проникающей способностью, при действии на организм они вызывают образование свободных радикалов ОН или НО2 из воды, находящейся в тканях. Эти радикалы обладают высокой реакционной способностью. Они могут расщеплять нуклеиновые кислоты и другие органические вещества. Облучение вызывает как генные, так и хромосомные мутации. Ультрафиолетовое излучение характеризуется меньшей энергией, не вызывающей ионизацию тканей. Его действие приводит к образованию тимидиновых димеров. Присутствие их в ДНК обусловливает ошибки при ее репликации. Химические мутагены должны обладать следующими качествами: высокой проникающей способностью; свойством изменять коллоидное состояние хромосом; определенным действием на состояние хромосомы или гена. К химическим мутагенам можно отнести многие неорганические и органические соединения, например кислоты, щелочи, перекиси, соли металлов, формальдегид, пестициды, дефолианты, гербициды, колхицин и др. Некоторые вещества способны усиливать мутационный эффект в сотни раз по сравнению со спонтанным. Их называют супермутагенами. К ним относят нитрозосоединения – иприт, диэтилнитрозамин, уретан и др. Некоторые лекарственные препараты также обладают мутагенным эффектом, например, цитостатики, производные этиленимина, нитрозомочевина. Они повреждают ДНК в процессе репликации. Известны также биологические факторы мутагенеза. Вирусы оспы, кори, ветряной оспы, эпидемического паротита, гепатита, краснухи и др. способны вызывать разрывы хромосом. Вирусы могут усиливать темпы мутации клеток хозяина за счет подавления активности репарационных систем. Есть данные о возрастании числа хромосомных перестроек в клетках человека после пандемий, вызванных вирулентными вирусами. Канцерогене́з — сложный патофизиологический процесс зарождения и развития опухоли.

    25.Мутации на хромосомной уровне организации наследственного материала. Хромосомные аберрации, их значение для биологии и медицины. Хромосомные мутации - изменение структуры хромосомы. Делеция – потеря участка хромосомы; Транслокация –перенос части хромосомы на другую; Инверсия – поворот участка хромосомы на 180; дубликация – удвоение генов в определенном участке хромосом. Хромосомные аберрации (хромосомные мутации, хромосомные перестройки) — тип мутаций, которые изменяют структуру хромосом. Хромосомные перестройки играют роль в эволюционном процессе и видообразовании, в нарушении фертильности, в онкологических  и врождённых наследственных заболеваниях человека.

    26.Цитоплазматическая наследственность. Наследственность и среда.

    Цитоплазматическая (внеядерная) наследственность. — наследственность, осуществляемая с помощью молекул ДНК, находящихся в пластидах и митохондриях. Характерная черта - наследование по линии матери. Наследственность и среда. В генетической информации заложена способность развития определенных свойств и признаков. Эта способность реализуется лишь в определенных условиях среды. Одна и та же наследственная информация в измененных условиях может проявится по разному. Норма реакции – диапазон изменчивости, в пределах которой в зависимости от условий среды один и тот же генотип способен давать разные фенотипы.

    24.Мутации на генном и геномном уровне организации наследственного материала. Значение медицине, примеры. Генные - изменение нуклеотида в молекулах ДНК, приводящие к образованию аномального гена- признака. Пример: гемофилия, серповидно-клеточная анемия. Геномные – изменение числа хромосом. Полиплоидия - кратное увеличение гаплоидного набора. Анеуплоидия – изменение хромосомного набора на 1,2 хромосомы – 2n+1, 2n-1. У человека синдром Дауна.47 хромосом.

    27.Генетика человека как наука, и предмет ее изучения, задачи. Человек как специфический объект генетических исследований. Генетика человека – наука, изучающая закономерности наследования нормальных и патологических признаков человека. Задачи генетики: 1)изучение способов хранения генетической информации (у вирусов, бактерий, растений, животных и человека); 2)анализ способов передачи наследственной информации от одного поколения клеток и организмов к другому; 3)выявление механизмов и закономерностей реализации генетической информации в процессе онтогенеза и влияние на них условий среды обитания; 4)изучение закономерностей и механизмов изменчивости и ее роли в приспособлении организмов и эволюционном процессе; 5)изыскание способов исправления поврежденной генетической информации. Значение генетики для медицины проявляется в возможности, а на современном этапе развития медицины и необходимости более полного понимания природы различных заболеваний и патологии в целом. Успехи в области генетики человека и медицинской генетики оказали большое влияние на многие разделы медицины.

    28.Методы изучения генетики человека: генеалогический, близнецовый, биохимический. Примеры. 1)Генеалогический метод - изучение родословных. Позволяет устанавливать тип наследования признака (доминантный или рецессивный, сцепленный с полом или аутосомный), зиготность организмов и вероятность проявления признаков в будущих поколениях. Генеалогическим методом доказано наследование многих заболеваний (гемофилии, дальтонизма, брахидактилии и др.). Благодаря родословной удалось проследить наследование гена гемофилии, начиная от английской королевы Виктории – носительницы этой болезни. 2)Близнецовый метод - изучение наследования признаков у близнецов Близнецыпотомки одних родителей, которые развиваются совместно за 1 беременность. Монозиготные (однояйцевые, их у человека около 35-38% от общего количества) – близнецы, развивающиеся из одной зиготы, при дроблении которой образуются бластомеры, которые затем обособляются и  из них развиваются самостоятельные организмы. Имеют 100 %-ное сходство генотипа и почти 100 %-ное сходство фенотипа. Дизиготные ( разнояйцевые) – близнецы, развивающиеся одновременно из 2-х разных зигот. Имеют сходство генотипа около 50 % и похожи друг на друга, как обычные братья и сёстры. Метод позволяет выявить роль наследственности и внешней среды в формировании признаков. 3)Биохимические методы основаны на исследовании биологических жидкостей (крови, мочи, амниотической жидкости) для изучения активности ферментов и химического состава клеток, который определяется наследственностью. Методы выявляют генные мутации и гетерозиготное носительство рецессивных генов. Ранняя диагностика заболеваний и применение диет на первых этапах постэмбрионального развития позволяют излечить или облегчить заболевание.

    29. Методы генетики человека, изучающие хромосомные болезни: цитогенетиечский, дерматоглифический. Примеры.1)Цитогенетический метод - изучение кариотипа (набор хромосом) клеток при помощи микроскопической техники и выявлять геномные (изменение числа хромосом) и хромосомные (изменение структуры хромосом) мутации.
    Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов,лекарственных препаратов и др. 2)Дерматоглифический метод ( греч. derma – кожа, gliphe – рисовать) – это изучение рельефа кожи на пальцах, ладонях и подошвах стоп. Это эпидермальные выступы – гребни, образующие строго индивидуальные узоры. Ф. Гальтон классифицировал эти узоры (петли, завитки, дуги). Разделы дерматоглифики: а) дактилоскопия – изучение узоров на подушечках пальцев; б) пальмоскопия – изучение узоров на ладонях; в) плантоскопия – изучение узоров подошвенной поверхности стопы.Закладка узоров: между 10 – 19 неделями внутриутробного развития – закладка узоров на подушечках пальцев; в 20 недель – узор хорошо различим; к шести месяцам – полное формирование узоров. Значение  дерматоглифических исследований: определение зиготности близнецов; диагностика некоторых наследственных заболеваний; в судебной медицине; в криминалистике для идентификации личности; в клинической генетике для подтверждения диагноза хромосомных синдромов.

    34.Основные направления генной инженерии и генной терапии. Генная терапия моногенных болезней.ГЕННАЯ ИНЖЕНЕРИЯ(генетическая инженерия), совокупность методов молекулярной генетики, направленных на искусственное создание новых, не встречающихся в природе сочетаний генов. Направления: 1)Производство пищи:Стало возможным производство пищи минуя животноводство и растениеводство, только из микроорганизмов. Пока остается главным - генная селекция растений, животных и бактерий с целью повышения продуктивности, устойчивости к болезням и абиотическим факторам и внедрения генов животных в гены растений. 2)Производство источников энергии и новых материалов: бензин заменяют этиловым спиртом, полученный бактериями из растительного сырья. Использование «биогаза», искусственной нефти, солярки из бытовых отходов. Производство искусственных тканей с помощью микроорганизмов. 3) Генная инженерия в медицине: производство лекарств (инсулин, интерферон, соматотропин, антибиотики, вакцины, витамины), генная терапия: выделение поврежденного гена и переноса нормального в клетку (генные болезни обмена веществ). Генотерапия — совокупность генноинженерных (биотехнологических) и медицинских методов, направленных на внесение изменений в генетический аппарат соматических клеток человека в целях лечения заболеваний. Это новая и бурно развивающаяся область, ориентированная на исправление дефектов, вызванных мутациями (изменениями) в структуре ДНК, или придания клеткам новых функций. Направления генной терапии: 1)Исправление ошибок — искусственном создании необходимых количеств продуктов того или иного плохо работающего гена в организме больного, за счет введения в организм нормального гена, полученного от здоровых пациентов. 2)Подавить излишнюю функцию геннов. Генная терапия моногенных болезней. В таблице приведён список болезней, для которых принципиально возможен генотерапевтический подход, генокоррекция которых с большей вероятностью будет осуществленна уже в обозримом будущем.

    30.Сущность молекулярных болезней человека. Возможности их профилактики и лечения. Серповидно-клеточная анемия, гемофилия, дальтонизм, альбинизм, фенилкетонурия, болезнь Вильсона-Коновалова, муковисцидоз, наследованная гиперхолестериненемия, идиотия Тея-Сакса. Молекулярные болезни - врождённые ошибки метаболизма, заболевания, обусловленные наследственными нарушениями обмена веществ. Термин предложен американским химиком Л. Полингом. В начале 20 в. английский врач Л. Э. Гаррод, изучая ряд наследственных заболеваний, предположил, что они возникают в результате пониженной активности или полного отсутствия фермента, контролирующего определённый этап обмена веществ. Серповидно-клеточная анемия — это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение — так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа), за что эта форма гемоглобинопатии и получила название серповидно-клеточной анемии. Основные симптомы серповидно-клеточной анемии: усталость и анемия, приступы боли, дактилит (отек и воспаление пальцев рук и/или ног) и артрит, бактериальные инфекции, тромбоз крови в селезенке и печени, легочные и сердечные травмы, язвы на ногах, асептический некроз (инфаркт кости), повреждение глаз. Для лечения применяется гидроксимочевина, способствующая повышению уровня гемоглобина. Гемофилия — наследственное заболевание, связанное с нарушением коагуляции (процессом свёртывания крови); при этом заболевании возникают кровоизлияния в суставы, мышцы и внутренние органы, как спонтанные, так и в результате травмы или хирургического вмешательства. При гемофилии резко возрастает опасность гибели пациента от кровоизлияния в мозг и другие жизненно важные органы, даже при незначительной травме. Больные с тяжёлой формой гемофилии подвергаются инвалидизации вследствие частых кровоизлияний в суставы (гемартрозы) и мышечные ткани (гематомы). Гемофилия относится к геморрагическим диатезам, обусловленным нарушением плазменного звена гемостаза (коагулопатия). Гемофилия появляется из-за изменения одного гена в хромосоме X. Лечение. Основной метод лечения - заместительная терапия. В настоящее время с этой целью используют концентраты VIII и IX факторов свёртывания крови. Дозы концентратов зависят от уровня VIII или IX фактора у каждого больного, вида кровотечения. Дальтонизм, цветовая слепота — наследственная, реже приобретённая особенность зрения, выражающаяся в неспособности различать один или несколько цветов. Названа в честь Джона Дальтона, который впервые описал один из видов цветовой слепоты на основании собственных ощущений, в 1794 году. Передача дальтонизма по наследству связана с X-хромосомой и практически всегда передаётся от матери-носителя гена к сыну, в результате чего в двадцать раз чаще проявляется у мужчин. Лечению не подлежит. Альбинизм (от лат. albus, «белый») — врождённое отсутствие пигмента кожи, волос, радужной и пигментной оболочек глаза. Причиной заболевания является отсутствие (или блокада) фермента тирозиназы, необходимой для нормального синтеза меланина — особого вещества, от которого зависит окраска тканей. Лечению не подлежит. Фенилкетонурия (фенилпировиноградная олигофрения) — наследственное заболевание группы ферментопатий, связанное с нарушением метаболизма аминокислот, главным образом фенилаланина. Сопровождается накоплением фенилаланина и его токсических продуктов, что приводит к тяжёлому поражению ЦНС, проявляющемуся в виде нарушения умственного развития. В большинстве случаев (классическая форма) заболевание связано с резким снижением или полным отсутствием активности печёночного фермента фенилаланин-4 гидроксилазы, который в норме катализирует превращение фенилаланина в тирозин. Заболевание наследуется по аутосомно-рецессивному типу. Лечение фенилкетонурии. Режим амбулаторный, госпитализация показана для коррекции диеты в случае нестабильной концентрации фенилаланина плазмы. Болезнь Вильсона — Коновалова (гепатоцеребральная дистрофия или гепатолентикулярная дегенерация или болезнь Вестфаля — Вильсона — Коновалова) — врожденное нарушение метаболизма меди, приводящее к тяжелейшим наследственным болезням центральной нервной системы и внутренних органов. Заболевание передается по аутосомно-рецессивному типу, обусловлено низким или аномальным синтезом церулоплазмина — белка, транспортирующего медь (ген, кодирующий белок расположен на 13-й хромосоме). Муковисцидоз(кистозный фиброз) — системное наследственное заболевание, обусловленное мутацией гена трансмембранного регулятора муковисцидоза и характеризующееся поражением желез внешней секреции, тяжёлыми нарушениями функций органов дыхания и желудочно-кишечного тракта. В основе заболевания лежит генная мутация. Муковисцидоз наследуется по аутосомно-рецессивному типу и регистрируется в большинстве стран Европы с частотой 1:2000 — 1:2500 новорожденных. Лечение муковисцидоза - мероприятия по уменьшению вязкости мокроты и улучшению дренажа бронхов, антибактериальную терапию, борьбу с интоксикацией и гипоксией, гиповитаминозом, диета больного должна соответствовать возрасту, содержать повышенное на 10-15% количество белка и нормальное количество жиров и углеводов. Антибиотики подбирают с учетом антибиотикограммы. Гиперхолестеринемия (гиперлипидемия) Гиперлипидемия (гиперлипопротеинемия, дислипидемия) — аномально повышенный уровень липидов и/или липопротеинов в крови человека. Нарушение обмена липидов и липопротеинов встречается довольно часто в общей популяции. Гиперлипидемия является важным фактором риска развития сердечнососудистых заболеваний в основном в связи со значительным влиянием холестерина на развитие атеросклероза. Кроме этого, некоторые гиперлипидемии влияют на развитие острого панкреатита. Желательно, чтобы уровень холестерина в организме в целом не превышал 200 мг/дл. Лечение – диеты. Идиотия Тея-Сакса – болезнь Тея — Сакса — редкое наследственное заболевание нервной системы. Названо в честь британского офтальмолога Уоррена Тея (1843—1927), и американского невролога Бернарда Сакса (1858—1944). (Болезнь распространена у евреев ашкеназов). Вызывается мутацией гена, ответственного за синтез фермента гексозоаминидазы A — фермента, принимающего участие в метаболизме ганглиозидов. В результате, ганглиозиды накапливаются в нервных клетках, нарушая их работу. Наследуется по аутосомно-рецессивному типу наследования. Это значит, что вероятность рождения больного ребёнка существует только, если оба родителя являются носителями мутантного гена, и составляет 25 %. Диагноз болезни Тея-Сакса подтверждается биохимическим исследованием крови, картиной глазного дна. На сетчатке выявля­ется характерное пятно вишнево-красного цвета («вишневая косточка») и атрофия диска зрительного нерва. Лечение в настоящее время лечение не разработано. Медицинская помощь сводится к облегчению симптомов, а в случае поздних форм болезни к задержке её развития.

    31.
    1   2   3   4


    написать администратору сайта