Главная страница
Навигация по странице:

  • Химический состав живой материи. Основные строительные блоки биополимеров.

  • Структура воды, её физико-химические свойства, причины уникальности этих свойств. Виды воды в организме животных. Значение свойств воды для живых систем.

  • Функция воды в организме. Эндогенная, экзогенная вода.

  • Функции веществ в организме.

  • Виды полезной работы в организме. Источники энергии для её выполнения.

  • Ответы БХ. Предмет, разделы и задачи биологической химии. Вклад русских и зарубежных учёных в развитие биологической химии


    Скачать 329.13 Kb.
    НазваниеПредмет, разделы и задачи биологической химии. Вклад русских и зарубежных учёных в развитие биологической химии
    Дата09.10.2018
    Размер329.13 Kb.
    Формат файлаdocx
    Имя файлаОтветы БХ.docx
    ТипДокументы
    #52899
    страница1 из 6
      1   2   3   4   5   6

    Ответы на вопросы экзамена по БХ

    1. Предмет, разделы и задачи биологической химии. Вклад русских и зарубежных учёных в развитие биологической химии.

    Биохимиянаука изучающая строение живых организмов, всю совокупность превращения веществ в организме и процессы лежащие в основе жизнедеятельности.

    Разделы биохимии:

    1. Статистическая – занимается анализом строения химического состава организмов.

    2. Динамическая – изучение превращения веществ в организме.

    3. Функциональная – изучает процессы лежащие в основе проявления жизнедеятельности.

    Биохимия обязана своему становлению многим смежным наукам и по-прежнему сохраняет с ними тесную связь в изучении живой природы. Вместе с тем, она остается оригинальной и самостоятельной наукой, задачей которой является исследование взаимосвязи строения веществ и их функций, превращения химических соединений в живом организме, способа преобразования энергии в живых системах, механизмов регуляции химических превращений и физико-химических процессов в клетках, тканях и органах, молекулярных механизмов переноса генетической информации в живых организмах и т.д.

    Вклад учёных в развитие БХ:

    Французский ученый А. Лавуазье количественно исследовал и объяснил сущность дыхания, указав на роль кислорода в этом процессе.

    Немецкий химик Ю. Либих в 30-40 годы 19 века успешно развил методы количественного химического анализа и применил их к исследованию биологических систем.

    Русский химик А. М. Бутлеров создал теорию строения органических соединений (1861). Он в своей теории утверждал, что атомы и молекулы существуют в определенных реальных взаимоотношениях, количественных и пространственных, которые и выражаются формулами. Он указывал также, что химические свойства веществ обусловлены их строением.

    Французский физиолог К. Бернар выделил из печени гликоген и показал, что он превращается в глюкозу, поступающую в кровоток.

    В 1868 г. Ф. Мишер в лаборатории немецкого физиолога и биохимика Ф. Гоппе-Зейлера открыл ДНК.

    К этому времени относятся работы одного из основоположников отечественной биохимии А. Я. Данилевского (1838-1923). Исследуя строение белков, он сформулировал ряд положений, которые в дальнейшем легли в основу полипептидной теории структуры беков. А.Я. Данилевским впервые высказана идея об обратимости действия ферментов и на основании этого осуществлен ферментативный синтез белковоподобных веществ (пластеины). Он разработал оригинальную методику разделения и очистки ферментов путем адсорбции и элюции (десорбции), которую широко используют и в наши дни. А.Я. Данилевский возглавил в Казанском университете первую в России кафедру биохимии и создал первую русскую школу биохимиков.

    Большие заслуги в развитии отечественной биохимии принадлежат М.В. Ненцкому (1847-1901). В 1891 г. он создал первую в России биохимическую лабораторию при Институте экспериментальной медицины в Петербурге. Им был выполнен ряд выдающихся исследований: совместно с сотрудниками впервые были установлены основные этапы биосинтеза мочевины, также впервые подробно исследовано строение гемоглобина и сделано сопоставление в эволюционном плане со структурой хлорофилла.

    В 1905 г. А. Гарден и В. Ионг выделили первый кофермент спиртового брожения – «озимазу», называемый в наше время НАД.

    В этом же году Ф. Кнооп открыл и исследовал окисление жирных кислот.

    К 20-30-м годам относятся блестящие работы немецкого биохимика О. Варбурга по выделению и изучению дыхательных ферментов (цитохромоксидаза, флавиновые дегидрогеназы и др.), выделению пиридиновых нуклеотидов, изучению их структуры и функции.

    В 1933 г. Г. Кребс подробно изучил орнитиновый цикл образования мочевины, а 1937 г. датируется открытие им же цикла трикарбоновых кислот.

    1. Химический состав живой материи. Основные строительные блоки биополимеров.

    Биологически важные элементы:

    1. Органогенные элементы: кислород (O) – 65%, углерод (C) – 18%, водород (H) – 10%, азот (N) – 3%.

    2. Макроэлементы: калий (K) – 0,35%, кальций (Ca) – 2%, магний (Mg) – 0,05%, натрий (Na) – 0,15%, сера (S) – 0,25%, фосфор (P) – 1,1%, хлор (Cl) – 0,15%.

    3. Микроэлементы: бром (Br), железо (Fe), йод (I), кобальт (Co), марганец (Mn), медь (Cu), молибден (Mo), селен (Se), фтор (F), хром (Cr), цинк (Zn).

    Строительные блоки молекул:

    Мономеры кислот =>

    Мономеры сахаров => моносахара

    Мономеры липидов => глицерин и 3 жирные кислоты

    Нуклеопротеиды => нуклеотиды => азотистое основание, дизоксирибозы и остатка фосфорной кислоты.

    1. Структура воды, её физико-химические свойства, причины уникальности этих свойств. Виды воды в организме животных. Значение свойств воды для живых систем.

    Молекула воды (Н2О) - полярное соединение, в котором электрофильный атом кислорода притягивает спаренные электроны от атомов водорода, приобретая частичный отрицательный заряд, в то время как атомы водорода приобретают частично положительные заряды.

    Химически чистая вода - это прозрачная жидкость без запаха и вкуса. Молекула воды содержит 11,19% водорода и 88,81% кислорода. Молекулярная масса воды составляет 18,016, температура замерзания - 0°С, температура кипения +100°С, плотность воды при 4°C -1 г/см3.

    Вода - отличный растворитель многих органических и мине­ральных веществ, что связано со структурой ее молекулы. Для воды характерна водородная связь, определяющая в значительной степени ее свойства и значение. Водородные связи возникают между частичным отрицательным зарядом атома кислорода одной молекулы воды и частичным положительным зарядом атома водорода соседней. Концентрацию ионов водорода в биологических системах выражают через водородный показатель – pH. Различают пресную, солоноватую и соленую воду. Вода содержит неорганические ионы, примеси органических веществ.

    Уникальные свойства воды объясняются способностью её молекул образовывать межмолекулярные ассоциаты за счёт водородных связей и ориентационных, индукционных и дисперсионных взаимодействий (силы Ван-дер-Ваальса). Молекулы воды образовывают как ассоциаты (не имеющие упорядоченной структуры), так и кластеры (имеющие структуру). Кластер — объединение нескольких однородных элементов, которое может рассматриваться как самостоятельная единица, обладающая определёнными свойствами. В жидком виде связи соседних молекул воды образуют непостоянные и быстротечные структуры. В замёрзшем виде каждая молекула льда жёстко связана с четырьмя другими.

    Состояния и виды воды в организме.

    Содержащуюся в организме воду условно разделяют на свободную и иммобилизованную. Свободная вода содержится в плазме крови, лимфе, спинномозговой жидкости, пищеварительных соках, моче. В межклеточных пространствах ее сравнительно мало, и она удерживается там капиллярными силами. Свободная вода обеспечивает приток к тканям питательных веществ и удаление из них конечных продуктов обмена.

    Иммобилизованная вода бывает двух видов: гидратационная и иммобильная. В отличие от свободной она лишена способности к свободному перемещению, причем меньшая ее часть прочно связана с полярными группами белков и других биополимеров (гидратационная вода).

    Другая часть иммобилизованной воды (иммобильная), хотя и не связана полярными группами, лишена способности к свободному пере­мещению, так как она заключена в надмолекулярных клеточных структурах (мембраны, органеллы, фибриллярные агрегаты).

    Биологическое значение воды.

    Вода в организме выполняет ряд жизненно важных функций. Прежде всего, она является универсальным растворителем минеральных и органических веществ, входящих в корма, и продуктов обмена веществ. Вода - пластический материал, из которого построены органы, ткани и клетки. Множественные функции воды определяются ее физико-химическими свойствами. Молекулы воды, как диполи, ассоциированы между собой при помощи водородных связей. На разрыв этих связей затрачивается значительное количество энергии, что придает воде высокую теплоемкость (у воды она в 4 раза выше, чем у воздуха, являющегося «внешней средой» обитания большинства высших животных). Благодаря этому вода играет важную роль в процессах терморегуляции организмов. Около 25% избытка тепловой энергии выделяется из организма в результате испарения воды с поверхности кожи. Приблизительно столько же тепла выделяется из организма с парами выдыхаемого воздуха.

    Молекулы воды участвуют в создании вторичной и третичной структуры молекул белков. Все питательные вещества корма усваиваются в пищевом канале с участием воды (реакции гидролиза). Для воды характерна очень низкая вязкость, что придает водным растворам хорошую текучесть и быстрое перемещение жидкостей в организме. Вода и ее растворы смачивают трущиеся поверхности, способствуя улучшению их скольжения.

    1. Функция воды в организме. Эндогенная, экзогенная вода.

    Функции воды в организме.

    Тело человека в среднем на 75 % состоит из воды. Это соотношение с возрастом изменяется, к сожалению, в сторону уменьшения. Вода, будучи основной составляющей всех жидкостей организма, в частности крови, в которой более 90 % содержится именно ее, выполняет следующие основные функции:

    • регуляция температуры тела;

    • выведение шлаков, токсинов и продуктов жизнедеятельности;

    • транспорт питательных веществ и кислорода;

    • усвоение и переваривание продуктов питания;

    • транспортная функция;

    • амортизация суставов и предотвращение их трения;

    • поддержание структур клеток;

    • защита тканей и внутренних органов;

    • улучшение метаболизма.

    Виды воды.

    Ткани и клетки используют два вида воды: экзо- и эндогенную. Экзогенная вода поступает в организм извне - с кормом и питьем. В общей массе она составляет 6/7 всей воды, необходимой для жизни организма. 1/7 общей массы воды образуется в тканях животного как конечный продукт окисления нуклеиновых кислот, белков, липидов, углеводов. Это эндогенная вода. Установлено, что при полном окислении 100 г жиров организм получает 107,1 г воды, углеводов - 55,6 и белков — 41,3 г воды.

    1. Функции веществ в организме.

    1. Липиды — так называют жиры и жироподобные вещества (липоиды). Относящиеся сюда вещества характеризуются растворимостью в органических растворителях и нерастворимостью (относительной) в воде.

    Различают растительные жиры, имеющие при комнатной температуре жидкую консистенцию, и животные — твердую.

    Функции липидов:

    • структурная — фосфолипиды входят в состав клеточных мембран;

    • запасающая — жиры накапливаются в клетках позвоночных животных;

    • энергетическая — треть энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров, которые используются и как источник воды;

    • защитная — подкожный жировой слой защищает организм от механических повреждений;

    • теплоизоляционная — подкожный жир помогает сохранить тепло;

    • электроизоляционная — миелин, выделяемый клетками Шванна, изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов;

    • питательная — желчные кислоты и витамин D образуются из стероидов;

    • смазывающая — воски покрывают кожу, шерсть, перья животных и предохраняют их от воды; восковым налетом покрыты листья многих растений; воск используется пчелами в строительстве сот;

    • гормональная — гормон надпочечников — кортизон и половые гормоны имеют липидную природу, их молекулы не содержат жирных кислот.

    При расщеплении 1 г жира выделяется 38,9 кДж энергии.

    1. Углеводы. В состав углеводов входят углерод, водород и кислород. Различают следующие углеводы.

    Моносахариды, или простые углеводы, которые в зависимости от содержания атомов углерода имеют названия триозы, пентозы, гексозы и т. д. Пентозы — рибоза и дезоксирибоза — входят в состав ДНК и РНК. Гексоза – глюкоза — служит основным источником энергии в клетке.

    Полисахариды — полимеры, мономерами которых служат моносахариды гексозы. Наиболее известными из дисахаридов (два мономера) являются сахароза и лактоза. Важнейшими полисахаридами являются крахмал и гликоген, служащие запасными веществами клеток растений и животных, а также целлюлоза — важнейший структурный компонент растительных клеток.

    Растения обладают большим разнообразием углеводов, чем животные, так как способны синтезировать их на свету в процессе фотосинтеза. Важнейшие функции углеводов в клетке: энергетическая, структурная и запасающая.

    Энергетическая роль состоит в том, что углеводы служат источником энергии в растительных и животных клетках; структурная — клеточная стенка у растений почти полностью состоит из полисахарида целлюлозы; запасающая — крахмал служит запасным продуктом растений. Он накапливается в процессе фотосинтеза в вегетационный период и у ряда растений откладывается в клубнях, луковицах и т. д. В животных клетках эту роль выполняет гликоген, откладывающийся преимущественно в печени.

    При расщеплении 1 г вещества выделяется 17,6 кДж энергии.

    1. Белки.Среди органических веществ клетки белки занимают первое место, как по количеству, так и по значению. У животных на них приходится около 50% сухой массы клетки. В организме человека встречается около 5 млн. типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и сложность строения, белки построены всего из 20 различных аминокислот. Часть белков, входящих в состав клеток органов и тканей, а также аминокислоты, поступившие в организм, но не использованные в синтезе белка, подвергаются распаду с освобождением 17,6 кДж энергии на 1 г вещества.

    Белки выполняют в организме много разнообразных функций: строительную (входят в состав различных структурных образований); защитную (специальные белки — антитела — способны связывать и обезвреживать микроорганизмы и чужеродные белки) и др. Кроме этого, белки участвуют в свертывании крови, предотвращая сильные кровотечения, выполняют регуляторную, сигнальную, двигательную, энергетическую, транспортную функции (перенесение некоторых веществ в организме).

    1. Ферменты.Все ферменты, выполняющие роль катализаторов, — вещества белковой природы, они ускоряют химические реакции, протекающие в клетке, в десятки и сотни тысяч раз. Каталитическую активность фермента обусловливает не вся его молекула, а только небольшой ее участок — активный центр, действие которого очень специфично. В одной молекуле фермента может быть несколько активных центров.

    Одни молекулы ферментов могут состоять только из белка (например, пепсин) — однокомпонентные, или простые; другие содержат два компонента: белок (апофермент) и небольшую органическую молекулу — кофермент. Установлено, что в качестве коферментов в клетке функционируют витамины. Если учесть, что ни одна реакция в клетке не может осуществляться без участия ферментов, становится очевидным то важнейшее значение, которое имеют витамины для нормальной жизнедеятельности клетки и всего организма. Отсутствие витаминов снижает активность тех ферментов, в состав которых они входят.

    1. Витамины — биологически активные низкомолекулярные органические вещества — участвуют в обмене веществ и преобразовании энергии в большинстве случаев как компоненты ферментов.

    Суточная потребность человека в витаминах составляет миллиграммы, и даже микрограммы. Известно более 20 различных витаминов.

    Источником витаминов для человека являются продукты питания, в основном растительного происхождения, в некоторых случаях — и животного (витамин D, A). Некоторые витамины синтезируются в организме человека.

    1. Гормоны — вещества, вырабатываемые железами внутренней секреции и некоторыми нервными клетками — нейрогормонами. Гормоны способны включаться в биохимические реакции, регулируя процессы метаболизма (обмена веществ и энергии).

    Характерными особенностями гормонов являются:

    • высокая биологическая активность;

    • высокая специфичность (гормональные сигналы в «клетки-мишени»);

    • дистанционность действия (перенос гормонов кровью на расстояние к клеткам-мишеням);

    • относительно небольшое время существования в организме (несколько минут или часов).

    1. Нуклеиновые кислоты

    Существует 2 типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая) и РНК (рибонуклеиновая кислота).

    АТФ — аденозинтрифосфорная кислота, нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех молекул фосфорной кислоты.

    Структура неустойчива, под влиянием ферментов переходит в АДФ – аденозиндифосфорную кислоту (отщепляется одна молекула фосфорной кислоты) с выделением 40 кДж энергии. АТФ — единый источник энергии для всех клеточных реакций.

    Особенности химического строения нуклеиновых кислот обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этане индивидуального развития.

    Нуклеиновые кислоты обеспечивают устойчивое сохранение наследственной информации и контролируют образование соответствующих им белков-ферментов, а белки-ферменты определяют основные особенности обмена веществ клетки.

    1. Виды полезной работы в организме. Источники энергии для её выполнения.

    Энергетический обмен.

    Все процессы, происходящие в организме, можно разбить на 3 группы: пластические, энергетические, информационные.

    Использование химической энергии в организме называют энергетическим обменом. В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. За счет освобождающейся в организме энергии поддерживается определенная постоянная температура тела и совершается внешняя работа. Наиболее емким потреблением энергии в организме можно считать процесс движения, а также сердечную деятельность, дыхание, перистальтику кишечника и др. За счет окислительных процессов в сердечной мышце освобождается энергия, которая используется для сокращения миокарда, которая передается крови что, позволяет ей двигаться по сосудам.

    Каждая живая клетка нашего организма нуждается в поступлении определенного количества энергии, которая необходима для поддержания нормальной структуры (15% – ФТФ), уровня функциональной готовности (50% – АТФ) и активности (100% – АТФ), а также для выполнения специфических функций.

      1   2   3   4   5   6


    написать администратору сайта