Главная страница
Навигация по странице:

  • Ч. 2 ЗОЛОТОЕ СЕЧЕНИЕ Введение

  • История развития «золотого сечения»

  • РефератАввакумов. Предпочтительные числа. Золотое Сечение.


    Скачать 1.03 Mb.
    НазваниеПредпочтительные числа. Золотое Сечение.
    Дата14.05.2022
    Размер1.03 Mb.
    Формат файлаdocx
    Имя файлаРефератАввакумов.docx
    ТипРеферат
    #529067
    страница2 из 4
    1   2   3   4

    Программы комплексной стандартизации
    Они представляют собой плановые документы, содержащие оптимальную совокупность взаимосвязанных нормативно-технических документов, подлежащих разработке или пересмотру и определяющих состав и организацию работ по комплексному решению задач повышения технического уровня и качества продукции. Программы комплексной стандартизации должны обеспечивать сбалансированность норм и требований к техническому уровню и качеству выпускаемой продукции и используемых в ее производстве сырья, материалов, комплектующих изделий, технических средств производства, средств контроля и включать нормативно-техническую документацию, намечаемую к разработке или пересмотру, с указанием основных требований, срока разработки, исполнителей.

    В настоящее время ПКС становятся эффективным организующим средством создания долговременных межотраслевых связей, преодоления узковедомственных барьеров и обеспечения решений в достижении общегосударственных целей. Они способствуют расширению ассортимента и повышению качества изделий, в том числе с индексом «Новинка», снижению потерь сырья и готовой продукции, а также сроков освоения новых изделий.

    Предусмотрено разработать и утвердить 58 программ комплексной стандартизации, в том числе ПКС для нормативно-технического обеспечения Продовольственной программы. Развитие программно-целевого метода в планировании стандартизации связано с нормативно-техническим обеспечением научно-технических программ, средствами комплексной стандартизации на всех уровнях управления (общегосударственном, отраслевом, республиканском, региональном), а также определением перспектив развития групп однородной продукции и разработкой государственных стандартов для этих групп.

    Основными принципами комплексной стандартизации являются: системность, комплексность, оптимальное ограничение, перспективность, увязка с действующими стандартами, реализация. Разработка ПКС возлагается на министерство (ведомство), ведущее в производстве вида продукции, являющейся для программы конечной. Это министерство организует выполнение всех этапов ПКС и контролирует выполнение утвержденных программ комплексной стандартизации.

    Общее методическое руководство и координацию разработки и реализации ПКС осуществляет Госстандарт. Госстандарт утверждает структуру ПКС, проводит научно-техническую экспертизу разработанных программ, рассматривает, утверждает, регистрирует, издает и рассылает программы, контролирует их разработку и реализацию.

    Так, программа комплексной стандартизации (ПКС) «Яйца куриные» предусматривает разработку государственного стандарта на однородную продукцию, где устанавливаются повышенные требования к массе диетических и столовых яиц с учетом их качества. Предусмотрена также более широкая дифференциация яиц по массе с выделением из категории диетических так называемых отборных яиц массой более 66 г каждое.

    Основной источник получения экономического эффекта стандартизации - экономия, достигаемая в результате улучшения качества выпускаемой продукции в сфере ее эксплуатации или потребления. К примеру, внедрение ГОСТ 7596-81 «Мясо. Разделка баранины и козлятины для розничной торговли» благодаря увеличению выхода отрубов первого сорта дало 20 млн. руб. годовой экономии.

    На стадии обращения (хранение, транспортирование) и реализации товаров народного потребления стандартизация способствует упорядочению перевозок, уменьшению запасов, сокращению их номенклатуры и повышению сохранности изделий. Так, внедрение прогрессивных стандартов на методы транспортирования ведет к упорядочению транспортных перевозок, изменению способов транспортирования, уменьшению потерь готовой продукции, повышению скорости перевозок грузов, вследствие чего ускоряется их доставка, а также уменьшается время нахождения товаров в пути.

    При определении экономического эффекта стандартизации товаров народного потребления необходимо комплексно учитывать влияние покупательского спроса, повышение качества продукции, а также экономические последствия и результаты использования потребителем стандартизованной продукции.
    Заключение
    Таким образом, становится ясно, что комплексная стандартизация обеспечивает единые требования к качеству продукции, сырья, материалов, полуфабрикатов и комплектующих изделий, используемых в ее производстве, что программы комплексной стандартизации представляют собой плановые документы, содержащие оптимальную совокупность взаимосвязанных нормативно-технических документов, подлежащих разработке или пересмотру и определяющих состав и организацию работ по комплексному решению задач повышения технического уровня и качества продукции.

    Ч. 2 ЗОЛОТОЕ СЕЧЕНИЕ

    Введение
    Все живое и все красивое — все подчиняется божественному закону, имя которому — «золотое сечение». Так что же такое «золотое сечение»?.. Что это за идеальное, божественное сочетание? Может быть, это закон красоты? Или все-таки он — мистическая тайна? Научный феномен или этический принцип? «Золотое сечение» — это одновременно и то, и другое, и третье. И в этом его подлинная загадка, его великая тайна.

    Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей. Принципы «золотого сечения» используются в математике, физике, биологии, астрономии и др. науках, в архитектуре и др. искусствах. Они лежат в основе архитектурных пропорций многих замечательных произведений мирового зодчества, главным образом античности и Возрождения.

    Золотое сечение - основа структурной гармонии природных и искусственных систем. Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии.

    О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Великий Пифагор создал тайную школу, где изучалась мистическая суть «золотого сечения». Евклид применил его, создавая свою геометрию, а Фидий — свои бессмертные скульптуры. Платон рассказывал, что Вселенная устроена согласно «золотому сечению». А Аристотель нашел соответствие «золотого сечения» этическому закону. Высшую гармонию «золотого сечения» будут проповедовать Леонардо да Винчи и Микеланджело, ведь красота и «золотое сечение» — это одно и то же. А христианские мистики будут рисовать на стенах своих монастырей пентаграммы «золотого сечения», спасаясь от Дьявола. При этом ученые — от Пачоли до Эйнштейна — будут искать, но так и не найдут его точного значения. Бесконечный ряд после запятой — 1,6180339887... Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому.

    Золотое сечение (гармоническое деление, деление в крайнем и среднем отношении)это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему. Четыре столетия назад немецкий астроном и математик Иоганн Кеплер сказал: «В геометрии существует два сокровища – теорема Пифагора и деление отрезка в крайнем и среднем отношении. Первое можно сравнить с ценностью золота, второе можно назвать драгоценным камнем». Гениальный ученый поставил пропорцию «золотого сечения» на один уровень с самой знаменитой геометрической теоремой.

    История развития «золотого сечения»
    История “Золотого сечения” - это история человеческого познания мира. Понятие “Золотое сечение” прошло в своем развитии все стадии познания. В дошедшей до нас античной литературе «золотое сечение» впервые встречается во II книге «Начал» Евклида, самом известном математическом сочинении античной науки, написанном в III веке до н.э., где дается его геометрическое построение, равносильное решению квадратного уравнения вида х(а+х)=а². Евклид применял «золотое сечение» при построении правильных 5- и 10-угольников, а также в стереометрии при построении правильных 12- и 20-гранников. Переводчик Дж. Кампано из Наварры (III век) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне, они были известны только посвященным. После Евклида исследованием «золотого сечения» занимались Гипсикл (II век до н.э.), Папп Александрийский (III век н.э.) и другие. Несомненно, что «золотое сечение» было известно еще и до Евклида. Первая ступень познания - открытие “золотого сечения” древними пифагорейцами. От простого созерцания действительности они перешли к выражению его в мире чисел. Им приписывают построение правильного 5-угольника и геометрического построения, равносильные решению квадратных уравнений. Именно пентаграмму Пифагорейцы выбрали символом своего союза – религиозной секты во главе с Пифагором. По их теории, в основу мирового порядка положены числа. Гармония заключается в числовых отношениях. Пифагорейцы приписывали числам различные свойства. Так, четные числа они называли женскими, нечетные (кроме 1) – мужскими. Число 5 – как сумма первого женского числа (2) и первого мужского (3) – считалось символом любви. Отсюда такое внимание к пентаграмме, имеющей 5 углов. Пятиконечная звезда – пентаграмма – очень красива, недаром ее помещают на свои флаги и гербы многие страны. Ее красота, оказывается, имеет математическую основу.

    В целом все первые геометрические системы – эвклидова геометрия, теорема Пифагора – свидетельствуют о том, насколько волновали древних греков проблемы гармонии, поиск идеальных пропорций и форм. Однако есть предположение, что первыми к принципу золотого сечения пришли все же египтяне. Наиболее известная пирамида Хеопса построена с использованием т.н. золотого треугольника, в котором соотношение гипотенузы к меньшему катету равно золотому сечению. Храмы, барельефы, предметы быта и украшения из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого сечения.

    Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников. Эстетическим каноном древнегреческой культуры принцип «золотого сечения» стал благодаря Пифагору, который изучал в стране пирамид тайные науки египетских жрецов. Их результат воплощен в фасаде древнегреческого храма Парфенона (V век до н.э.).



    «Золотое сечение» многократно встречается при анализе геометрических соразмерностей Парфенона. Это древнее сооружение с его гармоническими пропорциями дарит нам такое же эстетическое наслаждение, как и нашим предкам. Многие искусствоведы, стремившиеся раскрыть секрет того могучего эмоционального воздействия, которое это здание оказывает на зрителя, искали и находили в соотношениях его частей золотую пропорцию. В своих архитектурных творениях древнегреческие мастера исходили из пропорций, которые видели в природе. При раскопках Парфенона обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.



    Также с использованием золотого сечения созданы Афродита Праксителя и театр Диониса в Афинах. Платон (427-347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

    В средневековой Европе с «золотым сечением» познакомились по арабским переводам «Начал» Евклида. Переводчик и комментатор Евклида Дж. Кампано (XIII век) добавил к 13 книге «Начал» предположение, содержащее арифметическое доказательство несоизмеримости отрезков и обеих частей его «золотого сечения».

    В XV-XVI веках усилился интерес к «золотому сечению» среди ученых и художников в связи с его применением, как в геометрии, так и в искусстве, особенно в архитектуре. В средние века считалось, что пентаграмма служит охранным знаком от сатаны. Вспомним, например, как описывает Гете проникновение дьявола Мефистофеля в келью доктора Фауста, на котором была начертана пентаграмма. Мефистофель сначала позвал черного пуделя отгрызть кончик двери с частью пентаграммы. Только после этого он смог предстать перед Фаустом. Лука Пачоли посвятил «золотому сечению» трактат «Божественная пропорция» с блестяще выполненными иллюстрациями (1509 год). Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать ее «божественную суть» как выражение божественного триединства: бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок – бога отца, а весь отрезок – бога духа святого). Пачоли считают творцом начертательной геометрии. По его мнению, даже Бог использовал принцип золотого сечения для создания Вселенной. Эта идея была позже использована Иоганом Кеплером (1596 год), последняя книга которого так и называлась «Гармония Вселенной». Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение). Кеплер называл золотую пропорцию продолжающей саму себя. «Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности». Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

    Полагают, что иллюстрации к изданной в Венеции книге Луки Пачоли «Божественная пропорция» сделал Леонардо да Винчи. Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное. Леонардо да Винчи считал, что идеальные пропорции человеческого тела должны быть связаны с числом φ, деление отрезка в отношении φ он назвал «золотым сечением». «Золотое сечение» или близкие ему пропорциональные отношения легли в основу композиционного построения многих произведений мирового искусства, например, Капелла Пации во Флоренции архитектора Ф.Брунеллески (XV век).

    В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица – ртом и т.д.

    В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой». Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название “Золотое деление как основной морфологический закон в природе и искусстве”. В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.
    В конце XIX – начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.

    Систематизировать знания по золотому сечению и придать им четкую арифметическую форму фундаментальной пропорции мироздания удалось уже только в наше время. Большая роль в исследовании золотого сечения принадлежит украинскому учёному Алексею Стахову, в 80-х годах прошлого века обосновавшему базис нового учения о гармонии систем, должного стать, по его мнению, основной интегрирующей наукой XXI века. Ощутимый прорыв в современных представлениях о природе формообразования биологических объектов сделал в начале 90-х годов украинский ученый Олег Боднар, создавший новую геометрическую теорию филлотаксиса. Весной 2003 г. российский физик-теоретик Юрий Владимиров открыл принцип золотого сечения в структуре атома. Довольно известны, например, работы российского ученого Харитонова об экономическом развитии российских регионов и страны, в целом исходя из принципов золотого сечения. Благодаря исследованиям американских ученых Эллиота, Пречтера и Фишера числа Фибоначчи вошли в сферу бизнеса как основа оптимальных стратегий.

    С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором выстроил такой ряд чисел: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д., известный как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0,617, а 34 : 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение – 0,618 : 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.
    1   2   3   4


    написать администратору сайта