При этом приблизительно половина молекулы ре концевая часть, экспонирована наружу, а концевая спрятана 481 Биомедицинская химия, 2016 том 62, вып. 5, с. 481495. Обзоры
Скачать 1.5 Mb.
|
21, 1434-1442. 36. Kuzmicheva G.A., Eroshkin A.M., Potemkin V.A., Jayanna P.K., Petrenko V.A. (2008) Proceeding of the Nanotechnology Conference and Trade Show. NSTI-Nanotech 2008, ISBN 978-1-4200-8504-4 Vol. 2, 446-448 37. Gillespie J.W., Gross A.L., Puzyrev A.T., Bedi D., Petrenko V.A. (2015) Front Microbiol., 6, 628. 38. Jayanna P.K., Bedi D., Deinnocentes P., Bird R.C., Petrenko V.A. (2010) Protein Eng. Des. Sel., 23, 423-430. 39. Shadidi M., Sioud M. (2003) FASEB J., 17, 256-268. 40. Kouzmitcheva G.A., Petrenko V.A., Smith G.P. (2001) Clin. Diagn. Lab. Immunol., 8,150-160. 41. Manhani M.N., Ribeiro V.S., Cardoso R., Ueira-Vieira C., Goulart L.R., Costa-Cruz J.M. (2011) Parasite Immunol., 33(6), 322-329. 42. Туманова О.Ю., Кувшинов В.Н., Орловская И.А.. Проняева Т.Р., Покровский А.Г., Ильичев А.А., Сандахчиев Л.С. (2003) Мол. биол, 37, 556-560. 43. Туманова О.Ю., Кувшинов В.Н., Ильичев А.А., Некрасов Б.Г., Иванисенко В.А., Козлов А.П., Сандахчиев Л.С. (2001) Мол. биол, 35, 146-151. 44. Gazarian K., Gazarian T., Betancourt J.I., Alonso Morales R.A. (2011) Vet. Microbiol., 154, 29-36. 45. Carnazza S., Foti C., Gioffrè G., Felici F., Guglielmino S. (2008) Biosens. Bioelectron., 23, 1137-1144. 46. Rao S., Mohan K.V., Atreya C.D. (2013) PLoS One, 8(2), e56081. 47. Bishop-Hurley S.L., Schmidt F.J., Erwin A.L., Smith A.L. (2005) Antimicrob. Agents Chemother., 49(7), 2972-2978. 48. Deutscher S.L. (2010) Chem. Rev., 110, 3196-3211. 49. Pasqualini R., Ruoslahti E. (1996) Mol. Psychiatry, 1, 423. 50. Loi M., Di Paolo D., Soster M., Brignole C., Bartolini A., Emionite L., Sun J., Becherini P., Curnis F., Petretto A. et al. (2013) J. Control Release, 170, 233-241. 51. Fu B., Zhang Y., Long W., Zhang A., Zhang Y., An Y., Miao F., Nie F., Li M., He Y., Zhang J., Teng G. (2014) Biotechnol. Lett., 36, 2291-2301. 52. Valetti S., Maione F., Mura S., Stella B., Desmaële D., Noiray M., Vergnaud J., Vauthier C., Cattel L., Giraudo E., Couvreur P. (2014) J. Control Release, 192, 29-39. 53. Zhang Z.F., Shan X., Wang Y.X., Wang W., Feng S.Y., Cui Y.B. (2014) J. Cardiothorac. Surg., 9, 76-83. 54. Ma C., Yin G., Yan D., He X., Zhang L., Wei Y., Huang Z. (2013) J. Pept. Sci., 19, 730-736. 55. Pu X., Ma C., Yin G., You F., Wei Y. (2014) Biochem. Biophys. Res. Commun., 443, 858-863. 56. Chang D.K., Lin C.T., Wu C.H., Wu H.C. (2009) PLoS One., 4, e4171, 1-11. 57. Perea S.E., Reyes O., Baladron I., Perera Y., Farina H., Gil J., Rodriguez A., Bacardi D., Marcelo J.L., Cosme K. et al. (2008) Mol. Cell Biochem., 316, 163-167. 58. Sundell G.N., Ivarsson Y. (2014) Biomed. Res. Int., 2014, 176-172. 59. Dinkel H., van Roey K., Sushama Michael S. (2014) Nucleic Acids Res., 42, D259–D266. 60. Denisov S.G., Beliavskaia V.A., Voevoda M.I. (2001) Mol. Gen. Mikrobiol. Virusol., 2, 19-24. 61. Ivarsson Y., Arnold R., McLaughlin M., Nim S., Joshi R., Ray D., Liu B., Teyra J., Pawson T., Moffat J., Li S.S., Sidhu S.S., Kim P.M. (2014) Proc. Natl. Acad. Sci. USA, 111, 2542-2547. 62. Seker U.O., Demir H.V. (2011) Molecules, 16, 1426-1451. 63. Nam K.T., Kim D.W., Yoo P.J., Chiang C.Y., Meethong N., Hammond P.T., Chiang Y.M., Belcher A.M. (2006) Science., 312, 885-888. 64. Lower B.H., Lins R.D., Oestreicher Z., Straatsma T.P., Hochella M.F. Jr., Shi L., Lower S.K. (2008) Environ. Sci. Technol., 42, ПЕПТИДНЫЙ ФАГОВЫЙ ДИСПЛЕЙ 65. Mao C., Flynn C.E., Hayhurst A., Sweeney R., Qi J., Georgiou G., Iverson B., Belcher A.M. (2003) Proc. Natl. Acad. Sci. USA, 100, 6946-6951. 66. Mao C., Solis D.J., Reiss B.D., Kottmann S.T., Sweeney R.Y., Hayhurst A., Georgiou G., Iverson B., Belcher A.M. (2004) Science, 303, 213-217. 67. Sanghvi A.B., Miller K.P., Belcher A.M., Schmidt C.E. (2005) Nat. Mater., 4, 496-502. Кузьмичева, Белявская 495 PEPTIDE PHAGE DISPLAY IN BIOTECHNOLOGY AND BIOMEDICINE G.A. Kuzmicheva 1,2 , V.A. Belyavskaya 1 1 Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, 630558 Russia; e-mail: kouzmitcheva@yahoo.com 2 XBiotech USA, Austin, TX, USA To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors etc.) Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nano materials. Key words: phage display, peptides, bacteriophages, random peptide phage libraries, landscape Поступила 30. 08. Принята к печати 29. 09. 2016. |