Принципы компоновки жбк зданий. Конструктивные схемы. Деформационные швы
Скачать 7.65 Mb.
|
Ленточные фундаменты под несущими стенами. Ленточные фундаменты под стенами. Их обычно делают сборными, собираемыми из отдельных блоков-подушек, на которые опираются фундаментные блоки.Блоки-подушки могут быть сплошные — прямоугольного и трапециевидного профилей, ребристые и пустотные. Наибольшее распространение получили сплошные блоки трапециевидного профиля. Они имеют простую геометрическую форму, армируются понизу одной сеткой и поэтому более просты в изготовлении, чем блоки других типов. Блоки-подушки укладывают вплотную и с зазором. Ширину их определяют из расчета основания — делением нормативной нагрузки на сопротивление грунта. Расчет прочности подушки производят только в поперечном направлении, рассматривая выступы как консоли, загруженные реактивным давлением грунта р (без учета массы подушки и грунта на ней). Арматура подбирается по моменту: с – вылет консоли Толщину сплошной подушки h устанавливают по расчету на поперечную силу назначая ее такой, чтобы не требовалось постановки поперечной арматуры.при этом должно выполняться условие Ленточные фундаменты под рядами колонн. Их выполняют обычно монолитными, таврового сечения с полкой понизу. В продольном направлении отдельная лента работает на изгиб, как балка, находящаяся под воздействием сосредоточенных нагрузок от колонн и отпора грунта снизу. Ребра армируют подобно неразрезным балкам. Продольную арматуру определяют расчетом прочности нормальных сечений на изгибающий момент, поперечную — расчетом наклонных сечений на поперечную силу. Фундаменты армируют сварными или вязаными каркасами. При армировании сварными каркасами в ребре должно быть не менее двух каркасов при b<400мм, не менее трех — при b = 400...800 мм и не менее четырех—приb>800 мм. Плоские каркасы объединяют в пространственные. Для этого к верхним продольным стержням приваривают соединительные стержни или на них укладывают сварные сетки. Расстояние между стержнями продольной рабочей арматуры можно назначать по общим правилам; в тяжелых фундаментах для увеличения крупности заполнителя в бетоне эти расстояния следует принимать не менее 100 мм. В расчетное сечение арматуры ленты включают продольные стержни каркасов и сеток. Часть нижних продольных рабочих стержней (до 30%) может быть распределено по всей ширине полки. Поскольку в процессе возведения и эксплуатации сооружения возможно неравномерное загружение фундамента и его неравномерная осадка, в ребрах укладывают непрерывную продольную верхнюю и нижнюю арматуру в количестве =0,2...0,4 %. Свесы полок тавра работают под воздействием отпора грунта как консоли, защемленные в ребре. Толщину полки назначают из условия, чтобы в ней не требовалась арматура для воспринятия поперечной силы. Для армирования полок целесообразно применять сварные сетки с рабочей арматурой в двух направлениях. При этом поперечные стержни используют как арматуру полки, а продольные включают в площадь нижней рабочей арматуры. При расчете фундаментные ленты большого поперечного сечения и сравнительно малой длины при небольших расстояниях между колоннами можно считать абсолютно жесткими, поскольку деформации конструкции малы по сравнению с деформациями основания. Распределение давления по подошве таких фундаментов можно приближенно принимать по линейному закону. Абсолютно жесткий ленточный фундамент рассчитывают как статически неопределимую балку, на которую сверху действует нагрузка от колонн, а снизу — реактивный отпор грунта. Размеры площади подошвы фундамента в этом случае устанавливают как для фундаментов, нагруженных внецентренно (или центрально) вдоль ленты. При симметричномзагружении ленты вдоль ее оси эпюра давления на грунт имеет вид прямоугольника, при несимметричном — трапеции. Фундаментные ленты большой длины, загруженные колоннами, расположенными на значительных расстояниях, считаются гибкими, поскольку их перемещения соизмеримы с перемещениями основания. Согласно другому методу грунт рассматривают как однородное упругое тело, бесконечно простирающееся вниз и в стороны и ограниченное сверху плоскостью. Такое основание принято называть упругим полупространством. Расчет железобетонных ленточных фундаментов как балок на упругом основании и упругом полупространстве детально разработан и изложен в специальной литературе. Сплошные фундаменты. Сплошные фундаменты бывают: плитными безбалочными, плитно-балочными и коробчатыми (рис. 12.22). Наибольшей жесткостью обладают коробчатые фундаменты. Сплошными фундаменты делают при особенно больших и неравномерно распределенных нагрузках. Конфигурацию и размеры сплошного фундамента в плане устанавливают так, чтобы равнодействующая основных нагрузок от сооружения проходила в центре подошвы. В некоторых случаях инженерной практики при расчете сплошных фундаментов достаточным оказывается приближенное распределение реактивного давления грунта по закону плоскости. Если на сплошном фундаменте нагрузки распределены редко, неравномерно,правильнее рассчитывать его как плиту, лежащую на деформируемом основании. Под действием реактивного давления грунта сплошной фундамент работает подобно перевернутому железобетонному перекрытию, в котором колонны выполняют роль опор, а элементы конструкции фундамента испытывают изгиб под действием давления грунта снизу. В зданиях и сооружениях большой протяженности сплошные фундаменты (кроме торцовых участков небольшой длины) приближенно могут рассматриваться как самостоятельные полосы (ленты) определенной ширины, лежащие на деформируемом основании. Сплошные плитные фундаменты многоэтажных зданий загружены значительными сосредоточенными силами н моментами в местах опирания диафрагм жесткости. Это должно учитываться при их проектировании. Безбалочные фундаментные плиты армируют сварными сетками. Сетки принимают с рабочей арматурой в одном направлении; их укладывают друг на друга не более чем в четыре слоя, соединяя без нахлестки в нерабочем направлении и внахлестку без сварки — в рабочем направлении. Верхние сетки укладывают иа каркасы подставки. Плитио-балочные сплошные фундаменты армируют сварными сетками и каркасами. На рис. 12.23 приведен пример армирования фундамента многоэтажного здания. В толще плиты уложены двойные продольные и поперечные сетки. Наиболее напряженная зона дополнительно усилена двойным слоем продольных сеток. На местный изгиб плита армирована верхней арматурой, сгруппированной в сетки из трех рабочих стержней; между ними оставлены промежутки для доступа к нижней арматуре. В ребрах плоские каркасы объединены в пространственные приваркой поперечных стержней и связаны шпильками с арматурой плиты. Плита единичной ширины, выделенная из сплошного фундамента вместе с основанием, по классификации теории упругости рассматривается как плоская задача приплоской деформации. В отличие от расчетной схемы балок, лежащих на линейно деформируемом полупространстве (см. рис. 12.12) в данном случае в расчетной схеме принимают во внимание деформирование ограниченной толщины основания размером обычно не более полудлины рассчитываемой полосы. Основная система, последовательность решения и формулы, приведенные для балок на упругом полупространстве, в принципе сохраняются. Конструктивные схемы одноэтажных каркасных производственных зданий. Компоновка, деформационные швы, мостовые краны. Существуютследующиеразновидностиодноэтажныхпромышленныхзданий: однопролетныеимногопролетные; зданиябезмостовыхкранов (50 %), сподвесными (15 %) исмостовымикранами (35 %); зданиясфонарямиибесфонарные; зданиясоскатнойималоуклоннойкровлей. Современныеодноэтажныепроизводственныезданиявподавляющембольшинствеслучаеврешаютсяпокаркаснойсхеме. Каркасзданияможетбытьобразованизплоскихэлементов, работающихпобалочнойсхеме (стропильныхконструкций—ригелей, накоторыеопираютсяплитыпокрытия, иколонн, заделанныхвфундаменты), иливключатьвсебяпространственнуюконструкциюпокрытия (ввидеоболочек, опертыхнаколонны). Пространственныйкаркасздания (рис. 11.1, а) условнорасчленяютнапоперечныеипродольныерамы, каждаяизкоторыхвоспринимаетгоризонтальныеивертикальныенагрузки. Основнымэлементомкаркасаявляетсяпоперечнаярама, состоящаяизколонн, защемленныхвфундаментах, ригелей (фермы, балки, арки) ипокрытияподнимввидеплит (рис. 11.1,6). Плитыпокрытияпривариваютсякригелямнеменеечемвтрехточкахспомощьюзакладныхдеталей, швытщательнозамоноличиваются, приэтомпокрытиеобразуетжесткийвсвоейплоскостидиск. Ригелиобычносоединяютсясколоннойшарнирно. Вэтомслучаедостигаетсяпростотамонтажаинезависимаятипизацияригелейиколонн, посколькупритакомсоединенииприложеннаякригелюнагрузканевызываетвстойкахизгибающихмоментов. Поперечнаярамавоспринимаетнагрузкуотмассыпокрытия, снега, кранов, стен, ветраиобеспечиваетжесткостьзданиявпоперечномнаправлении. Впродольнуюрамувключаетсяодинрядколоннвпределахтемпературногоотсекаипродольныеконструкции: подкрановыебалки, вертикальныесвязи, распоркипоколоннамиконструкциипокрытия (рис. 11.1, б). Продольнаярамаобеспечиваетжесткостьзданиявпродольномнаправленииивоспринимаетнагрузкиотпродольноготорможениякрановиветра, действующеговторецздания. Компоновка здания Сетка колонн одноэтажных каркасных зданий с мостовыми кранами в зависимости от технологии производственного процесса может быть 12X18, 12X24, 12X30 м или 6X18, 6X24, 6X30 м. Шаг колонн принимают преимущественно 12 м; если при этом шаге используются стеновые панели длиной 6 м, то по наружным осям кроме основных колонн устанавливают промежуточные (фахверковые) колонны. При шаге колонн 12 м возможен шаг ригелей 6 м с использованием в качестве промежуточной опоры подстропильной фермы (рис. 13 4). В целях сохранения однотипности элементов покрытия колонны крайнего ряда располагают так, чтобы разбивочная ось ряда проходила на расстоянии 250 мм от наружной грани колонны (рис. 13.5). Колонны крайнего ряда при шаге 6 м и кранах грузоподъемностью до 30 т располагают с нулевой привязкой, совмещая ось ряда с наружной гранью колонны (рис. 13.6, а). Колонны торцов здания смещают с поперечной разбивочиой оси на 500 мм (рис. 13.6,6). При большой протяженности в поперечном и продольном направлениях здание делят температурными швами на отдельные блоки. Продольный температурный шов выполняют, как правило, на спаренных колоннах со вставкой (рис. 13.6, в), при этом колонны у температурного шва имеют привязку к продольным разбивочным осям 250 мм (или нулевую при 6 м). Поперечный температурный шов также выполняют на спаренных колоннах, но при этом ось температурного шва совмещается с поперечной разбивочной осью, а оси колонн смещаются с разбивочной оси на 500 мм (рис. 13.6, г). Расстояние от разбнвочной оси ряда до оси подкрановой балки при мостовых кранах грузоподъемностью до 50 т принято 750 мм (см. рис. 13.3). Это расстояние складывается из габаритного размера кранаВ, размера сечения колонны в надкрановой части h2 и требуемого зазора С между габаритом крана и колонной. На крайней колонне Конструкции поперечных рам одноэтажных каркасных производственных зданий. Ригели поперечных рам по своей конструкции могут быть сплошными или сквозными, а соединение их со стойками — жесткое или шарнирное. Выбор очертания и формы сечения ригеля, его конструкции и характера соединения со стойками зависит от размера перекрываемого пролета, вида кровли, принятой технологии изготовления и монтажа. Жесткое соединение ригелей и колонн рамы приводит к уменьшению изгибающих моментов. Однако при этом не достигается независимая типизация ригелей и колонн рамы, так как нагрузка, приложенная к колонне, вызывает изгибающие моменты и в ригеле, а нагрузка, приложенная к ригелю, вызывает изгибающие моменты и в колоннах (рис. 13.7, а). При шарнирном соединении возможна независимая типизация ригелей и колонн, так как в этом случае нагрузки, приложенные к одному из элементов, не вызывают изгибающих моментов в другом (рис. 13.7,6). Шарнирное соединение ригелей с колоннами упрощает их форму и конструкцию стыка, отвечает требованиям массового заводского производства. В результате конструкции одноэтажных рам с шарнирными узлами как более экономичные приняты в качестве типовых. Конструктивно соединение ригелей с колоннами выполняют монтажной сваркой стального опорного листаригеля с закладной деталью в торце колонны (рис. 13.8). При пролетах до 18 м в качестве ригелей применяют предварительнонапряженные балки; при пролетах 24, 30 м — фермы. Колонны каркасного здания могут быть сплошными прямоугольного сечения или сквозными двухветвевыми(рис. 13-9). При выборе конструкции колонны следует учитывать грузоподъемность мостового крана и высоту здания. Сплошные колонны применяют при кранах грузоподъемностью до 30 т и относительно небольшой высоте здания; сквозные колонны — при кранах грузоподъемностью 30 т н больше и высоте здания более 12 м. Сквозные колонны имеют в нижней подкрановой части две ветви, соединенные короткими распорками-ригелями. Расстояние между осями распорок принимают (8...10)h. Распорки размещают так, чтобы размер от уровня пола до низа первой надземной распорки составлял не менее 1.6 м и между ветвями обеспечивался удобный проход Нижнюю распорку располагают ниже уровня пола. Высоту сечения распорки принимают (1,5...2) h, а ширину — равной ширине сечения ветви. Соединение двухветвевой колонны с фундаментомосуществляют в одном общем стакане или же в двух отдельных стаканах; во втором соединении объем укладываемого на монтаже бетона уменьшается (рис. 13.10). Глубину заделки колонны в стакане фундамента принимают равной большему из двух размеров. Фонари состоят из поперечных фонарных ферм и стоек, несущих плиты покрытий и опирающихся на ригели поперечных рам. В плоскости стоек фонаря размещают бортовые плиты. В целях типизации конструктивных элементов применяют фонари шириной 6 м при пролетах до 18 м и шириной 12 м при пролетах 24 и 30 м (рис. 13.12). Сопряжение несущих элементов фонарей с ригелями поперечных рам выполняют на монтажных болтах с последующей сваркой стальных закладных деталей. Обеспечение пространственной жесткости одноэтажных каркасных производственных зданий. Вертикальные и горизонтальные связи. Назначение связей. Система вертикальных и горизонтальных связей имеет следующие назначения: обеспечить жесткость покрытия в целом; придать устойчивость сжатым поясам ригелей поперечных рам; воспринимать ветровые нагрузки, действующие на торец здания; воспринимать тормозные усилия от мостовых кранов. Система связей работает совместно с основными элементами каркаса и повышает пространственную жесткость здания. Вертикальные связи. При действии горизонтальных нагрузок в продольном направлении здания (ветер на торец, торможение кранов и т.д.) усилия воспринимаются продольной рамой, ригелем которой является покрытие. Сопряжение между плитами покрытия и колоннами осуществляется через балки или фермы, обладающие малой жесткостью из своей плоскости. Поэтому при отсутствии связей горизонтальная сила, приложенная к покрытию, может привести к значительным деформациям ригелей из их плоскости (рис. 13.13, а), а приложенная к одной из колонн — вызвать ее существенную деформацию без передачи нагрузки на остальные колонны (рис. 13.13,6). Систему вертикальных связей по линии колонн здания предусматривают для того, чтобы создать жесткое, геометрически изменяемое в продольном направлении покрытие. Вертикальные связевые фермы из стальных уголков устанавливают в крайних пролетах блока между колоннами и связывают железобетонными распорками или распорками из стальных уголков по верху колонн (рис. 13.14, а). Решетка вертикальных связевых ферм для восприятия горизонтальных сил, действующих слева или справа, проектируется как крестовая система. При небольшой высоте ригеля на опоре (до 800 мм) и наличии опорного ребра, способного воспринять горизонтальную силу, продольные связи выполняют только в виде распорок по верху колонн. Вертикальные связи между колоннами из стальных уголков устанавливают в каждом продольном ряду в середине температурного блока. Эти связи приваривают к стальным закладным деталям колонн. Горизонтальные связи по нижнему поясу ригелей. Ветровая нагрузка, действующая на торец здания, вызывает изгиб колонн торцовой стены. Для уменьшениярасчетного пролета этих колонн покрытие используют как горизонтальную опору (см. рис. 13.13, г). В зданиях большой высоты и со значительными пролетами рационально создать горизонтальную опору для торцовой стены и в уровне нижнего пояса ригеля устройством горизонтальной связевой фермы (рис. 13.14,6). Такая дополнительная опора возможна также в виде горизонтальной фермы в уровне верха подкрановых балок. Горизонтальные связи по нижнему поясу выполняют из стальных уголков, образующих вместе с нижним поясом крайнего ригеля связевую ферму с крестовой решеткой. Опорное давление горизонтальной связевой фермы передаетсячерез вертикальные связи на все колонны температурного блока и дальше на фундаменты и грунты основания. Горизонтальные связи по верхнему поясу ригелей. Устойчивость сжатого пояса ригеля поперечной рамы из своей плоскости обеспечивается плитами покрытия, приваренными закладными деталями к ригелям. При наличии фонарей расчетная длина сжатого пояса ригеля из плоскости равна ширине фонаря. Чтобы уменьшить расчетный пролет сжатого пояса ригеля, по оси фонаря устанавливают распорки, которые в крайних пролетах температурного блока прикрепляют к горизонтальным фермам из стальных уголков (рис. 13.14, в). Если же фонарь не доходит до торца температурного блока, то горизонтальную связевую ферму по верхнему поясу ригелей, не делают, так как железобетонные панели покрытия за пределами фонаря сами образуют жесткую диафрагму. В этом случае распорки прикрепляют к элементам покрытия крайнего пролета. |