Главная страница
Навигация по странице:

  • Тема 6

  • Изображение технологического оборудования и коммуникаций Основные вопросы/план темы

  • Тезисы лекции

  • Вопросы для закрепления

  • Силлабус Волоконно-оптические линии связи АУ-103 рус ДОТ. Программа Волоконнооптические линии связи


    Скачать 2.45 Mb.
    НазваниеПрограмма Волоконнооптические линии связи
    Дата20.09.2022
    Размер2.45 Mb.
    Формат файлаdocx
    Имя файлаСиллабус Волоконно-оптические линии связи АУ-103 рус ДОТ.docx
    ТипПрограмма
    #686790
    страница7 из 23
    1   2   3   4   5   6   7   8   9   10   ...   23

    3.Переборов А.С., Брылеев А.М., Сапожников В.В.Теоретические основы автоматики и телемеханики. Учебник для вузов. Третье издание. М.: Транспорт,— 384 с.


    4.Иванов А. А. Автоматизация технологических процессов и производств: учебное пособие / А. А. Иванов. - 2-e изд., испр. и доп. - Москва: Форум: НИЦ ИНФРА-М, 2015. -224 с. - (Высшее образование). - ISBN 978-5-91134-948-6. -

    5.Фельдштейн Е. Э. Автоматизация производственных процессов в машиностроении учебное пособие / Е. Э. Фельдштейн, М. А. Корниевич. - Москва : ИНФРА-М ; Мн. : Нов. знание, 2015. - 264 с.: ил. - ISBN 978-5-16-010531-4. - Режим доступа:

    6.Иванов А. А. Автоматизация технологических процессов и производств [Текст] : учебное пособие для вузов / А. А. Иванов. - Москва : ФОРУМ, 2011. - 224 с. : ил., табл. - (Высшее образование). - Библиогр.: с. 219-220. - Гриф УМО. - В пер. - ISBN 978-5-91134-511-2.

    Тема 6 : Функциональные схемы автоматизации

    Изображение технологического оборудования и коммуникаций

    Основные вопросы/план темы:

    1.Использование устройств автоматизации в качестве носителя сигналов в канале связи.

    2. Параметры унифицированного сигнала

    Тезисы лекции Устройства автоматизации по роду используемой вспомогательной энергии носителя сигналов в канале связи, применяемой для приема и передачи информации и команд

    управления, делятся на электрические,пневматические и гидравлические. В отдельных видах изделий могут быть использованы и другие виды энергии носителей сигналов (акустическая,оптическая,механическаяидр.).

    Различают также устройства, работающие без использования вспомогательной энергии (приборы и регуляторы прямого действия).

    Устройства, питающиеся при эксплуатации энергией одного рода, образуют единую структурную группу или «ветвь».

    АСУ ТП, комплектуемые из приборов электрическойветви, имеют преимущества по чувствительности, точности, быстродействию, дальности связей, обеспечивают высокую схемную и конструктивную унификацию приборов. Применение интегральных микросхем способствует уменьшению габаритов и веса приборов, сокращению количества потребляемой ими энергии, повышению их надежности, расширению их функциональных возможностей (создание многофункциональных приборов), позволяет применять при их изготовлении современную прогрессивную технологию.

    Применение в АСУ ТП аналоговых и цифровых микросхем и микропроцессоров особенно важно в группе контрольно-измерительных приборов, так как обеспечивает возможность их непосредственной связи с управляющим контроллером.

    Приборы пневматическойветви характеризуются безопасностью применения в легковоспламеняемых и взрывоопасных средах, высокой надежностью в тяжелых условиях работы, особенно при использовании в агрессивной атмосфере. Они легко комбинируются друг с другом. Однако пневматические приборы уступают электронным в тех случаях, когда технологический процесс требует большого быстродействия или передачи сигналов на значительные расстояния.

    Гидравлические приборы позволяют получать точные перемещения исполнительных механизмов при больших усилиях.

    Создавая систему автоматизации для того или иного технологического процесса, мы так или иначе вынуждены как-то сопрягать датчики и другие сигнальные устройства - с исполнительными устройствами, с преобразователями, с контроллерами и т. д. Последние, как правило, принимают сигнал от датчика в форме напряжения или тока определенной величины (если речь об аналоговых сигналах), или в форме импульсов с определенными временными параметрами (в случае с цифровыми сигналами).

    Параметры этих электрических сигналов должны неким вполне определенным образом соответствовать параметрам физической величины, которую фиксирует датчик, чтобы управление конечным устройством получилось бы адекватным задаче автоматизации.

    Безусловно, удобнее всего унифицировать аналоговые сигналы от различных датчиков, дабы контроллеры обрели универсальность, чтобы пользователю не приходилось бы для каждого датчика подбирать свой индивидуальный вид интерфейса, а для каждого интерфейса — свой датчик.

    Измерения температуры среды, оборотов двигателя, давления в жидкости, механического напряжения образца, влажности воздуха и т. д. — зачастую осуществляется путем обработки непрерывных аналоговых сигналов, получаемых с соответствующих датчиков, при этом автоматически корректируется непрерывная работа сопряженного устройства: нагревательного элемента, частотного преобразователя, насоса, пресса и т. д.

    В качестве аналогового сигнала наиболее часто служит либо сигнал напряжения, изменяющийся в диапазоне от 0 до 10 В, либо токовый сигнал, изменяющийся в диапазоне от 4 до 20 мА.

    Унифицированныйсигнал (УС) это сигнал дистанционной передачи информации с унифицированными параметрами, обеспечивающий информационное сопряжение (интерфейс) между блоками, приборами и устройствами автоматизации. Под унифицированным параметром УС понимается тот его параметр, который является носителем информации: значение постоянного или переменного тока или напряжения, или частоты, код, давление воздуха пневматического сигнала.

    В зависимости от вида унифицированных параметров применяются унифицированные сигналы четырех групп:

    1.тока и напряжения электрические непрерывные;

    2.частотные электрические непрерывные;

    3.электрические кодированные;

    4.пневматические.

    Вопросы для закрепления

    1. Что такое электрические ветви?

    2. Что такое унифицированный сигнал (УС)?

    3. Какие бывают унифицированные сигналы?

    Литература:
    1.Казагачев В.Н.,Айткалиев Г.С., Бухарбаев М.А. Основы автоматики и автоматизация технологических процессов: учебное пособие- Алматы: New book.2021.-208c 2.Сапожников В.В., Кравцов Ю.А., Сапожников Вл.В.Теоретические основы железнодорожной автоматики и телемеханики: Учебник для вузов ж.-д. транспорта/ Под ред. В.В. Сапожникова. — М.: ГОУ «Учебно-методический центр по образованию на железнодорожном транспорте»,. — 394 с
    1   2   3   4   5   6   7   8   9   10   ...   23


    написать администратору сайта