Главная страница
Навигация по странице:

  • Гипотезы происхождения многоклеточных организмов.

  • Обмен веществ и энергии

  • Аденозинтрифосфа́т

  • Аденозиндифосфат

  • Пассивный транспорт

  • Экзоцитоз

  • 1. Автотрофные организмы – способны синтезировать органические вещества из неорганических.


  • ЭТ БИОЛОГИЯ =))). Прокариоты или доядерные


    Скачать 112.25 Kb.
    НазваниеПрокариоты или доядерные
    АнкорЭТ БИОЛОГИЯ =))).docx
    Дата23.08.2018
    Размер112.25 Kb.
    Формат файлаdocx
    Имя файлаЭТ БИОЛОГИЯ =))).docx
    ТипДокументы
    #23452
    страница4 из 5
    1   2   3   4   5

    Основные факторы эволюции по Дарвину


    • Наследственная изменчивость — изменения, которые возникают у каждого организма независимо от внешней среды и передаются потомкам;

    • Борьба за существование — совокупность взаимоотношений между особями и факторами окружающей среды;

    • Естественный отбор — выживание более приспособленных особей и гибель менее приспособленных.

    • Изоляция.

    БИЛЕТ-20.ГИПОТЕЗЫ ПРОИСХОЖДЕНИЯ МНОГОКЛЕТОЧНЫХ ОРГАНИЗМОВ

    . Гипотезы происхождения многоклеточных организмов.Все многоклеточные, как растения, так и животные, при половом размножении начинают процесс индивидуального развития с одной клетки — зиготы. Это дает основание судить о возможности их происхождения от протистов. Считается, что основной группой, от которой берут свое начало многоклеточные организмы, являются колониальные жгутиковые протисты.

    В основе современных представлений о происхождении многоклеточных организмов лежат гипотезы немецкого зоолога Э. Геккеля и русского ученого И.И. Мечникова, которые были предложены в конце 19 в.

    Гипотеза Э. Геккеля основана на сходстве эмбриональной стадии развития многоклеточных животных (бластулы) с шаровидной колонией жгутиковых протистов типа вольвокса. Э. Геккель считал, что примитивные многоклеточные — губки и кишечнополостные произошли от колониальных жгутиковых, у которых одна сторона вогнулась внутрь колонии, в результате чего образовался второй, внутренний слой клеток. Сходство этой предковой формы с эмбриональной гаструлой дало основание Э. Геккелю назвать ее гастреей.Гастрея имела рот, слепо замкнутую кишечную полость и двухслойную стенку тела, состоящую из экто- и энтодермы. Гастрея Э. Геккеля близка по организации к кишечнополостным, от которых, возможно, идет ветвь к высшим многоклеточным.

    Согласно гипотезе И.И. Мечникова предками многоклеточных были шарообразные колонии жгутиковых, первичным способом питания которых был фагоцитоз. Клетки, захватывающие пищевые частицы, временно утрачивали жгутики и перемещались внутрь колонии. Затем они могли возвращаться на поверхность колонии и восстанавливать жгутик. Путем дальнейшего размножения этих клеток внутри колонии образовался второй слой клеток и возник двухслойный организм — фагоцителла. Постепенно у фагоцителлы произошло разделение функций между клетками: наружные клетки эктодермы стали выполнять покровную и двигательную функции, а клетки внутреннего слоя — энтодермы — функции питания и размножения. В 70-е гг. 20 в. зоологи обратили внимание на крошечный морской организм — трихоплакс.

    В 1973 г. русский ученый А.В. Иванов установил, что трихоплакс по своему строению соответствует гипотетическому существу фагоцителле и, таким образом, заполняет брешь между ныне существующими одноклеточными и многоклеточными животными.

    БИЛЕТ-21. РОЛЬ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ В ЖИЗНИ ЖИВЫХ СУЩЕСТВ.КАК ОРГАНИЗМЫ ИСПОЛЬЗУЮТ ЭНЕРГИЮ? АТФ В БИОЛОГИЧЕСКОЙ РАБОТЕ?

    Обмен веществ и энергии - это совокупность физических и химических процессов превращения веществ и энергии в живых организмах, а также обмен веществами и энергией между организмом и окружающей средой. Обмен веществ у живых организмов заключается в поступлении из внешней среды различных веществ, в превращении и использовании их в процессах жизнедеятельности и в выделении образующихся продуктов распада в окружающую среду. 

    Диссимиляция – энергетический обмен.

    Ассимиляция- пластический обмен.

    Обязательным условием существования любого организма является постоянный приток питательных веществ и постоянное выделение конечных продуктов химических реакций, происходящих в клетках организма. Поступившие в организм в ходе питания органические вещества расщепляются ферментами на строительные блоки - мономеры и направляются во все клетки организма. Часть молекул этих; веществ расходуется на синтез специфических органических веществ, присущих данному организму. В клетках синтезируются белки, липиды, углеводы, нуклеиновые кислоты и другие вещества, которые выполняют различные функции (строительную, каталитическую, регуляторную, защитную и т.д.).Другая часть низкомолекулярных органических соединений, поступивших в клетки, идет на образование АТФ, в молекулах которой заключена энергия, доступная непосредственно для выполнения работы. В ходе превращения веществ в клетках организма образуются конечные продукты обмена, которые могут быть токсичными для организма и поэтому выводятся из него (например, аммиак). Таким образом, все живые организмы постоянно потребляют из окружающей среды определенные вещества, преобразуют их и выделяют в среду конечные продукты. Деятельность мышц, как любой процесс, происходящий в организме, требует энергии. Энергия нужна даже на работу мельчайших мышц глаза, дыхательных мышц и мышц сосудов или внутренних органов. Живой организм расходует энергию даже в состоянии глубокого наркоза или комы.

    Энергия, необходимая для мышечного сокращения, освобождается в результате распада химических веществ. Мышечная клетка устроена природой так, что может использовать для своего сокращения энергию распада только одного-единственного химического вещества - аденозинтрифосфорной кислоты (АТФ).  Соответственно, во время мышечного сокращения происходит распад АТФ в работающей мышечной клетке.

    БИЛЕТ-22 ЗНАЧЕНИЕ ПРОЦЕССОВ ОБМЕНА ВЕЩЕСТВ. В ФУНКЦИОНИРОВАНИИ КЛЕТКИ, ОРГАНИЗМА? РОЛЬ АТФ В РОСТЕ И БИОСИНТЕЗЕ?ГДЕ В КЛЕТКЕ ПРОТЕКАЮТ ПРОЦЕССЫ КИСЛОРОДНОГО ОКИСЛЕНИЯ? КАКОВ ИХ ХИМИЗМ И ЭНЕРГЕТИЧЕСКИЙ ЭФФЕКТ?

    Обмен веществ и энергии - это совокупность физических, химических и физиологических процессов превращения веществ и энергии в живых организмах, а также обмен веществами и энергией между организмом и окружающей средой

    Обязательным условием существования всех живых организмов, в том числе и человека, является постоянный обмен веществами и энергией с внешней средой. Из окружающей среды в организм человека поступают питательные вещества, кислород, вода, минеральные соли, витамины, необходимые для построения и обновления структурных элементов клеток и образования энергии, обеспечивающей протекание жизненных процессов. В клетках организма непрерывно происходят процессы химических превращений веществ: синтез свойственных организму белков, жиров и углеводов, одновременное расщепление сложных органических соединений с высвобождением энергии, выделение во внешнюю среду образующихся продуктов распада — воды, углекислого газа, аммиака, мочевины. Таким образом, обмен веществ— это совокупность процессов химического превращения веществ с момента их поступления в организм до выделения конечных продуктов. 

    Фотосинтез и биосинтез белков — примеры пластического обмена. Роль ядра, рибосом, эндоплазматической сети в биосинтезе белка. Ферментативный характер реакций биосинтеза, участие в нем разнообразных ферментов. Молекулы АТФ — источник энергии для биосинтеза.


    «кислородное дыхание» может обозначать-весь энергетический обмен, происходящий при наличии кислорода.


    Происходит на кристах митохондрий. 24 атома водорода, полученные в предыдущих стадиях, окисляются кислородом, при этом образуется вода и энергия на 34 АТФ. 

    Таким образом, всего при кислородном окислении глюкозы получается 38 АТФ.








    БИЛЕТ-23.РОЛЬ АТФ В ТРАНСПОРТЕ ИОНОВ ЧЕРЕЗ КЛЕТОЧНУЮ МЕМБРАНУ? ЧТО ТАКОЕ АТФ И АДФ?КАК ИСПОЛЬЗУЮТ АТФ В БИОЛОГИЧЕСКОЙ РАБОТЕ?

    Аденозинтрифосфа́т  нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах.

    Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения.

    Помимо энергетической АТФ выполняет в организме ещё ряд других не менее важных функций:

    • Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.

    • Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.

    • АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормональногосигнала.

    • Также известна роль АТФ в качестве медиатора в синапсах.

    • Многообразна роль АТФ в биологических процессах, связанных с переносом электронов и окислительным фосфорилировани-ем. Главными являются молекулярные реакции переноса энергии. Вследствие этого и возникает возможность биосинтеза - химической, механической, электрической и других видов энергии в живых системах.

    Аденозиндифосфат (АДФ) — нуклеотид, состоящий из аденина, рибозы и двух остатков фосфорной кислоты. АДФ образуется в результате переноса концевой фосфатной группы АТФ. АДФ участвует в энергетическом обмене во всех живых организмах.

    БИЛЕТ-24.СВОЙСТВА АВТОТРОФОВ И ГЕТЕРОТРОФОВ?

     Клетки растений и фотосинтезирующих бактерий на основе энергии солнечного света синтезируют АТФ и НАДФН, которые используются для синтеза углеводов, жиров, белков, нуклеиновых кислот и иных органических соединений, входящих в состав этих клеток и обеспечивающих их жизнь. Такие клетки называются автотрофными. Они делятся на фототрофы и хемеотрофы.фототрофы используют энергию солнца,это все зелёные растения и сине-зелёные водоросли.хемеотрофы-используют энергию химических реакций,это бактерии. 

    Все остальные живые существа, населяющие нашу планету, не способны использовать солнечную энергию и синтезировать органические вещества из неорганических соединений. Они должны получать готовые органические вещества, которые образуются в фотосинтезирующих и хемосинтезирующих клетках и, следовательно, являются гетеротрофными . Гетеротрофы получают энергию в результате окисления органических соединений. Следует заметить, что и фотосинтезирующие, и хемосинтезирующие автотрофы также способны получать энергию благодаряокислению органических веществ . Однако у гетеротрофов эти соединения поступают извне готовыми, а у автотрофов они синтезируются в клетках из неорганических соединений и далее используются ими же. Для гетеротрофных организмов окисление органических соединений служит единственным способом получения энергии. У растений, фотосинтезирующих бактерий этот путь используется с наступлением темноты, с прекращением фотосинтеза.

    БИЛЕТ-25.ПУТИ ПОСТУПЛЕНИЯ ВЕЩЕСТВ В КЛЕТКИ?

    Есть четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз.

    Пассивный транспорт — перенос веществ по градиенту концентрации из области высокой концентрации в область низкой, без затрат энергии (например, диффузия, осмос). 

    Диффузия — процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (против градиента концентрации)

    Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения.

    О́смос  — процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества (меньшей концентрации растворителя). Явление осмоса наблюдается в тех средах, где подвижность растворителя больше подвижности растворённых веществ.Полупроницаемыми называют мембраны, которые имеют достаточно высокую проницаемость не для всех, а лишь для некоторых веществ, в частности, для растворителя. 

    Активный транспорт- перенос веществ по градиенту концентрации с затратами энергии.( эндо- и экзоцитоз )

    Экзоцитоз - у эукариот клеточный процесс, при котором мембранные пузырьки сливаются с внешней клеточной мембраной. При экзоцитозе содержимое секреторных везикул  выделяется наружу, а их мембрана сливается с клеточной мембраной. Практически все макромолекулярные соединения (белки, пептидные гормоны и др.) выделяются из клетки этим способом.

    Эндоцито́з— процесс захвата внешнего материала клеткой, осуществляемый путём образования мембранных везикул. В результате клетка получает для своей жизнедеятельности гидрофильный материал, который иначе не проникает через липидный бислой  клеточной мембраны. Различают фагоцитоз, пиноцитоз.Фагоцито́з  — процесс, при котором специально предназначенные для этого клетки крови и тканей организма (фагоциты) захватывают и переваривают возбудителей инфекционных заболеваний и отмершие клетки. Пиноцито́з — Захват клеточной поверхностью жидкости с содержащимися в ней веществами.

    БИЛЕТ-26. КАКИМ ОБРАЗОМ МОЖНО ДЕМОНСТРИРОВАТЬ СУЩЕСТВОВАНИЕ НАСОСА Na-K В ЭУКАРИОТИЧЕСКИХ КЛЕТКАХ?

    Работа Na++-насоса. Для нормального функционирования клетка должна поддерживать определенное соотношение ионов К+ и Na+ в цитоплазме и во внешней среде. Концентрация К+ внутри клетки должна быть значительно выше, чем за ее пределами, а Na+— наоборот. Следует отметить, что Na+ и К+ могут свободно диффундировать через мембранные поры. Na++-насос противодействует выравниванию концентраций этих ионов и активно перекачивает Na+ из клетки, а K+ в клетку. Na++-насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как K+, так и Na+. Цикл работы Na++-насоса можно разделить на следующие фазы: 1) присоединение Na+ с внутренней стороны мембраны, 2) фосфорилирование белка-насоса, 3) высвобождение Na+ во внеклеточном пространстве, 4) присоединение K+ с внешней стороны мембраны, 5) дефосфорилирование белка-насоса, 6) высвобождение K+ во внутриклеточном пространстве. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки. За один цикл работы насос выкачивает из клетки 3Na+ и закачивает 2К+.

    БИЛЕТ-27.ОПРЕДЕЛЕНИЕ И СВОЙСТВА АВТОТРОФОВ, ГЕТЕРОТРОФОВ И МИКСОТРОФОВ?

    1. Автотрофные организмы – способны синтезировать органические вещества из неорганических. 

    Автотрофные фотосинтезирующие организмы (фотоавтотрофы), к которым относятся зеленые растения и фотосинтезирующие бактерии, при создании органических соединений используют энергию Солнца.
     
    Все остальные живые существа используют энергию, заключенную в химических связях.
     
    Автотрофные хемосинтезирующие организмы (хемоавтотрофы), к которым относятся некоторые бактерии, применяют энергию, выделяющуюся при окислении неорганических соединений (сероводорода, аммиака, железа и др.).
     

    2. Гетеротрофные организмы (животные, грибы, незеленые растения, большинство бактерий) не способны самостоятельно синтезировать органические вещества из неорганических, они используют энергию химических связей готовых органических соединений.
     
    Гетеротрофные организмы, в свою очередь, подразделяются на сапрофитов и паразитов. Сапрофиты, питаются органическими веществами мертвых тел . Паразиты, потребляют органические вещества живых организмов.
     

    3. Миксотрофные организмы, например, эвглена зеленая, насекомоядные растения могут питаться и как автотрофы, и как гетеротрофы.
     


    БИЛЕТ-28.УРОВНИ ОРГАНИЗАЦИИ ЖИВЫХ СИСТЕМ?
    1   2   3   4   5


    написать администратору сайта