Главная страница
Навигация по странице:

  • Теллур и полоний.

  • 10. Общая характеристика р-элементов VIIA-группы. Галогены.

  • Галогены и галогениды.

  • Водородгалогениды

  • Кислородные кислоты хлора и их соли.

  • Комплексные соединения галогенов.

  • Химия р-элементов лекц.. Рэлементы и их соединения общая характеристика рэлементов (рблок)


    Скачать 0.81 Mb.
    НазваниеРэлементы и их соединения общая характеристика рэлементов (рблок)
    АнкорХимия р-элементов лекц..doc
    Дата02.02.2018
    Размер0.81 Mb.
    Формат файлаdoc
    Имя файлаХимия р-элементов лекц..doc
    ТипДокументы
    #15128
    страница5 из 6
    1   2   3   4   5   6

    9. Биологическая роль р-элемеитов VIА-группы.

    Применение их соединений в медицине.
    Кислород. По содержанию в организме человека (мас. доля 62%) кислород относится к макроэлементам. Он незаменим и принадлежит к числу важнейших элементов, составляющих основу живых систем, т.е. является органогеном. Кислород входит в состав огромного числа молекул, начиная от простейших и кончая биополимерами. Исключительно велика роль кислорода в процессах жизнедеятельности, так как окисление кислородом питательных веществ — углеводов, белков, жиров — служит источником энергии, необходимой для работы органов и тканей живых организмов. Большинство окислительно-восстановительных реакций в организме протекает при участии кислорода и его активных форм.

    Фагоцитарные (защитные) функции организма также связаны с наличием кислорода, и уменьшение содержания кислорода в организме понижает его защитные свойства.

    В фагоцитах (клетках, способных захватывать и переваривать посторонние тела) кислород О2 восстанавливается до супероксид-иона О2-. Ион О2- — радикал, инициирующий радикальноцепные процессы окисления инородных органических веществ RН, захваченных фагоцитами.

    При недостатке кислорода эти процессы замедляются, и в результате сопротивляемость организма к инфекциям снижается.

    В медицинской практике кислород применяют для вдыхания при болезненных состояниях, сопровождающихся кислородной недостаточностью (гипоксией), заболеваниях дыхательных путей, сердечно-сосудистой системы, отравлениях оксидом углерода (II) СО, синильной кислотой НСN, а также при заболеваниях с нарушениями функций дыхания.

    Широко используется в клинической практике гипербарическая оксигена-ция — применение кислорода под повышенным давлением. Установлено, что гипербарическая оксигенация значительно улучшает кислородное насыщение тканей, гемодинамику, защищает головной мозг от гипоксии. Этот метод лечения с высокой эффективностью применяют в кардиологии, реанимации, неврологии, хирургии и других областях медицины. Для общего улучшения обменных процессов при лечении сердечно-сосудистых заболеваний в желудок вводят кислородную пену в виде так называемого кислородного коктейля.

    Аллотропную модификацию кислорода — озон О3 как очень сильный окислитель используют для дезинфекции помещений, обеззараживания воздуха и очистки питьевой воды. Небольшая примесь озона в воздухе создает ощущение приятной свежести и благотворно действует на состояние человека, особенно легоч­ных больных.

    При использовании кислорода О2 и озона О3 следует учитывать их токсичность, обусловленную интенсификацией процессов окисления в организме.

    Сера. По содержанию в организме человека (мас. доля 0,16%) сера относится к макроэлементам. Как и кислород, она жизненно необходима. Суточная потребность взрослого человека в сере около 4—5г. Сера входит в состав многих биомолекул — белков, аминокислот (цистина, цистеина, метионина и др.). гормонов (инсулина), витаминов (витамин В12). Много серы содержится в каротине волос, костях, нервной ткани.

    Аминокислоты, содержащие серу, характеризуются наличием водородсульфидных (тиоловых) —SН-групп (например, цистеин) или наличием дисульфидных связей —S—S— (например, цистин). При окислении тиоловых групп образуются дисульфидные связи и, наоборот, при восстановлении связей —S—S— образуются SН-группы, т.е. эти переходы обратимы:

    R1—S—S—R2 ⇄ R1SН + R2

    В некоторой степени этот обратимый переход защищает организм от радиационных поражений. Под влиянием ионизирующего облучения в результате радиолиза воды в организме образуются свободные радикалы, в том числе весьма активные Н• и ОН• , инициирующие процессы окисления. Водородсульфидные группы вступают в реакции со свободными радикалами:

    RSН + ОН• → RS• + Н2O

    Радикалы RS• малоактивны. Тем самым предотвращается воздействие активных радикалов на нуклеиновые кислоты и другие биомолекулы.

    В живых организмах сера, входящая в состав аминокислот, окисляется. Конечными продуктами этого процесса преимущественно являются сульфаты. Кроме того, образуются тиосульфаты, элементная сера и политионовые кислоты:

    Образующаяся в организме эндогенная серная кислота участвует в обезвреживании ядовитых соединений — фенола, крезола, индола, вырабатываемых в кишечнике из аминокислот микробами. Кроме того, серная кислота связывает многие чужеродные для организма соединения (ксенобиотики) —лекарственные препараты и их метаболиты. Со всеми этими соединениями серная кислота образует относительно безвредные вещества — конъюгаты, в виде которых они и выводятся из организма. Например, с мочой человека выделяется конъюгат — калиевая соль сернокислого эфира фенола:



    В медицинской практике широко применяют как саму серу, так и многие ее соединения: сера осажденная, натрий тиосульфат, сульфаты натрия, меди, цинка и др.

    Селен. По содержанию в организме (мас доля 10-5—10-7%) селен относится к микроэлементам. Некоторые исследователи относят его к жизненно необходимым элементам.

    Селен поступает с пищей — 55—110мг в год. Селен в основном концентрируется в печени и почках. Концентрация селена в крови составляет 0,001—0,004 ммоль/л.

    Несомненна связь селена с серой в живых организмах. При больших дозах селен в первую очередь накапливается в ногтях и волосах, основу которых составляют серосодержащие аминокислоты. Очевидно, селен как аналог серы замещает ее в различных соединениях:

    R—S—S—R → R—Sе—Sе—R

    Токсическое действие селенитов и селенатов на сельскохозяйственных животных давно известно Связанные с селеном заболевания скота наблюдались в местах, где в почве в повышенных количествах присутствуют эти соли. Тем неожиданнее оказались результаты опытов, в которых было обнаружено, что селен, правда, в значительно меньших количествах должен содержаться в пище крыс, цыплят, телят, ягнят и кроликов.

    Установлено, что недостаток селена ведет к уменьшению концентрации фермента глутатионпероксидазы, что, в свою очередь, приводит к окислению линидов и серосодержащих аминокислот.

    Проведенные в последние годы исследования показали, что селен в комплексе с какой-либо кислотой входит в состав активных центров нескольких ферментов: формиатдегидрогеназы, глутатионредуктазы и глутатионпероксидазы. В частности, в активном центре глутатионпероксидазы содержится остаток необычной аминокислоты — селеноиистеина:



    Этот фермент вместе с белком глутатионом и защищает клетки от разрушающего действия органических пероксйдов RООН и пероксида водорода. Возможно, что водородселенидная группа —SеН остатка селеноцистеина обладает какими-то преимуществами по сравнению с водородсульфидной группой —SН в механизме действия этого и других селенсодержащих ферментов.

    Следует отметить, что компенсация недостатка селена в организме путем добавления в рацион крыс натрия селенита Nа2SеО3 способствовала предохранению от некроза тканей. Это еще раз подчеркивает физиологическую роль селена в процессе жизнедеятельности.

    Хорошо известна и способность селена предохранять организм от отравления ртутью Нg и кадмием Сd. Оказалось, что селен способствует связыванию этих токсичных металлов с другими активными центрами — с теми, на которые их токсическое действие не влияет. Интересным является и факт взаимосвязи между высоким содержанием селена в .рационе и низкой смертностью от рака.

    В больших дозах, как уже отмечалось, селен токсичен. Распад соединений селена в организме животных приводит к выделению высокотоксичного диметилселена СН3—Sе—СН3, имеющего чесночный запах. Установлен механизм этой реакции. При взаимодействии селенистой кислоты H2SеО3 с глутатионом образуются соединения, содержащие группу —S—Sе—S—

    Н2SеО3 + 4GSН → GSSeSG + GSSG + 3Н2О

    Под действием ферментов соединения, содержащие группу —S—Sе—S—, восстанавливаются до диводородселенида:

    GSSeSG → H2

    который затем присоединяет метильные группы, образуя диметилселен.

    Теллур и полоний. Теллур обнаружен в живых организмах. Норма его содержания в тканях и органах не установлена. Не выяснен и вопрос, играет ли он какую-нибудь биологическую роль в живых организмах. Известно только, что введение в организм в избытке соединений теллура ведет, как и в случае селена, к замещению серы в тиоловых группах, что приводит к ингибированию ферментов.

    Данные о влиянии полония на живые организмы отсутствуют.

    Таким образом, среди элементов VIА-группы жизненно необходимыми являются макроэлементы кислород и сера. Селен физиологически активен, а биологическое действие теллура и полония не выявлено. В живых организмах кислород, сера и селен входят в состав биомолекул в степени окисления —2, причем вследствие близости физико-химических характеристик их атомов сера, селен и теллур могут замещать друг друга в соединениях Наблюдаются как случаи синергизма, так и анта­гонизма этих элементов.
    10. Общая характеристика р-элементов VIIA-группы. Галогены.
    Элементы фтор F, хлор Сl, бром Вr, иод I, астат Аt, входящие в VIIА-группу, называются галогенами (общее обозначение Г). В переводе с греч. галогены означают «солепорождающие». В эту группу часто включают также водород Н, однако свойства его существенно отличаются от свойств галогенов, и поэтому химические свойства водорода целесообразно рассматривать отдельно.

    На валентных орбиталях атомов галогенов находится по семь электронов — два на s- и пять на p-орбиталях. Электронная формула валентной оболочки пs2пр5, где п — номер периода.

    До завершения оболочки благородных газов недостает одного электрона. Поэтому галогены обладают большим сродством к электрону и являются сильными окислителями. Атомы галогенов, присоединяя электрон, образуют однозарядные галогенид-ионы с электронной структурой соответствующего благородного газа (пs2пр6).

    Такая склонность к присоединению электронов характеризует галогены как типичные неметаллы. Галогенид-ионы, особенно Сl-, устойчивы в биосредах.

    Одинаковое строение внешнего электронного слоя атомов галогенов обусловливает большое сходство в химических свойствах простых и сложных веществ, образуемых галогенами.

    Однако сопоставление свойств однотипных соединений галогенов показывает, что между ними имеются и существенные различия. Последние связаны с изменением атомных радиусов и различным строением внутренних электронных оболочек. Так, например, у хлора валентным электронам предшествует 8-электронная оболочка, а у брома и иода — более рыхлая, склонная к деформации 18-электронная оболочка. Поэтому можно ожидать, что свойства соединений хлора будут отличаться от свойств соединений брома и иода, особенно в тех случаях, когда в образовании химических связей принимают участие предвнешние атомные орбитали.

    С повышением заряда ядра в группе от F к Аt: увеличиваются радиусы атомов. Это находит отражение в уменьшении в ряду F—Аt энергии ионизации и сродства к электрону, электроотрицательности, стандартного потенциала восстановления.

    Уменьшение энергии ионизации помимо возрастания атомного радиуса объясняется усиливающимся (по мере заполнения электронных оболочек) экранированием заряда ядра электронами внутренних слоев. Также закономерно происходит в ряду Сl—Аt уменьшение энергии сродства к электрону. Это связано с ослаблением притяжения свободного электрона к ядру вследствие увеличения радиуса атома и экранирования. В результате, как и в других группах р-элементов, с увеличением числа заполняемых электронных оболочек неметаллические свойства ослабевают.

    Меньшее сродство к электрону у фтора (328 кДж/моль), чем у хлора (349 кДж/моль), объясняется значительным межэлектронным отталкиванием. Увеличение отталкивания свободного электрона атомом фтора обусловлено меньшим размером атома. Так как в ряду F—Сl—Вr—I—Аt энергия сродства вцелом уменьшается, окислительная активность в этом ряду также снижается.

    Необходимо отметить, что хотя сродство к электрону у фтора меньше, чем у хлора, элементный фтор тем не менее является наиболее сильным окислителем среди галогенов. Это можно объяснить следующим образом Энергия, необходимая для восстановления газообразного фтора и хлора до отрицательно заряженных ионов слагается из энергии разрыва связи между атомами галогенов Г и сродства к электрону.

    Так как химическая связь в молекуле хлора значительно прочнее, энергия разрыва связи в молекуле фтора существенно меньше, чем в молекуле хлора. Незначительный выигрыш в сродстве к электрону атома хлора не компенсирует большую затрату энергии на разрыв химической связи в молекуле хлора. В результате фтор оказывается более сильным окислителем.

    Для галогенов характерно многообразие химических соединений. Элементные галогены (нулевая степень окисления) представляют собой двухатомные неполярные молекулы Г2. Появление нечетных положительных степеней окисления +1, +3, +5, +7 атомов Сl, Вr, I, Аt связано с переходом электронов на d-орбитали. Например, атом хлора имеет один неспаренный электрон в нормальном состоянии и 5 свободных d-орбиталей с низкой энергией.

    Такой атом может быть переведен в зависимости от поглощаемой энергии в возбужденное состояние с тремя, пятью или семью неспаренными электронами.

    Исключение составляет фтор. Отсутствие низколежащих d-подуровней у его атома приводит к тому, что процесс возбуждения оказывается невыгодным. Переход электрона на высоколежащий 3d-подуровень требует очень большой затраты энергии. Поэтому для фтора характерна постоянная валентность, равная единице.

    Все галогены проявляют степень окисления —1 в водородгалогенидах НГ (например, НF, НСl) и в солях-галогенидах ЭГ (NаF, NаСl и др.).

    Водородгалогениды (НГ) — газы, хорошо растворимые в воде. Водные растворы НГ ведут себя как кислоты. Сила кислот НГ растет с уменьшением электроотрицательности галогенов сверху вниз по группе. Такой характер изменения силы кислот НГ объясняется уменьшением прочности связи Н—Г в ряду НF—НСl—НВr—НI и уменьшением энергии гидратации ионов Г-.

    Кислородные соединения галогенов (оксиды, кислоты) термически нестабильны. Устойчивость кислородных соединений галогенов в ряду F—Аt в целом возрастает.

    Галогены и галогениды. Элементные галогены — вещества общей формулы Г2, т.е. состоят из двухатомных молекул: F2, Cl2, Вr2, I2, Аt2. Связь Г—Г образуется за счет одной σ-связывающей молекулярной орбитали, полученной при перекрывании атомных nр-орбиталей. Остальным связывающим молекулярным орбиталям (π-орбиталям) соответствуют разрыхляющие, заполненные электронами:



    Образование двухатомных молекул галогенов из нейтральных атомов сопровождается выделением значительной энергии. В ряду Сl2 — Вr2 —I2 — Аt2 с увеличением межъядерного расстояния прочность связи между атомами уменьшается. Соответственно уменьшаются в этом ряду энтальпии диссоциации молекул Г2. Причиной уменьшения прочности связи в ряду является снижение степени перекрывания связывающих nр-орбиталей. Меньшую прочность связи Г—Г в молекулах фтора по сравнению с другими галогенами можно объяснить тем, что в образовании связи Г—Г не принимают участия d-орбитали.

    Элементные галогены Г2, как неполярные соединения, плохорастворимы в воде. При 20°С растворимость Сl2 — 0,091 моль/л, Вr2 — 0,22 моль/л, I2 — 0,001 моль/л. Однако равновесие Г2 (г) ⇄ Г2 (р) сдвигается вправо вследствие реакций галогенов с водой (принцип Ле Шателье).

    Фтор энергично реагирует с водой:

    2F2 + 2Н2О = 4НF + О2.

    При взаимодействии других галогенов с водой помимо соответствующего водородгалогенида образуется кислородсодержащая кислота. Например, хлор реагирует следующим образом:

    Сl2 + Н2О ⇄ Н+ + Сl- + НСlO

    Здесь происходит окисление — восстановление хлора (диспропорционирование). Эта реакция протекает при хлорировании воды.

    Значительно лучше, чем в воде, бром и иод растворяются в органических растворителях: этаноле, бензоле, диэтиловом эфире. Это их свойство используют для извлечения брома и иода из водных растворов.

    В медицинской практике в качестве обеззараживающего средства используются водно-спиртовые (w(I2) = 5%) и спиртовые (w(I2) = 10%) растворы иода.

    Для элементных галогенов характерны окислительно-восстановительные реакции. Эти реакции сопровождаются разрывом связи Г—Г с присоединением электронов к атомам галогена и образованием галогенид-ионов.

    Элементные галогены являются сильными окислителями и вступают во взаимодействие почти со всеми простыми веществами — металлами и неметаллами, образуя галогениды. С кислородом и азотом галогены непосредственно не взаимодействуют. Наиболее быстро с выделением большого количества теплоты протекает реакция галогенов с металлами. Так, например, металлический натрий, помещенный в атмосферу хлора, сгорает с образованием натрия хлорида:

    2Nа (т) + Сl2 (г) = 2NаСl (т)

    Хлор непосредственно взаимодействует со многими неметаллами (фосфором, мышьяком, сурьмой и кремнием) даже при низкой температуре. Так, белый фосфор загорается в атмосфере хлора при комнатной температуре:

    2Р + 5Сl2 = 2РСl5

    Аналогичным образом бром и иод вступают в реакции с металлами и неметаллами. Однако химическая активность брома и иода ниже, чем хлора

    Особенно высокую химическую активность проявляет фтор. Так, щелочные металлы, железо, свинец, а также неметаллы S, Р уже при комнатной температуре загораются в атмосфере фтора. При нагревании со фтором реагируют даже благородные газы ксенон и криптон:

    Хе + 2F2 = ХеF4

    Являясь наиболее электроотрицательным элементом, фтор образует соединения с элементами IIА-группы, устойчивость которых уменьшается в ряду ВеF2 — МgF2— СаF2— SrF2—ВаF2. Во многих биохимических процессах фтор выступает ингибитором, блокируя активные центры ферментов, содержащих Мg2+, Са2+ и ионы других металлов.

    Сопоставление свойств элементных галогенов показывает, что их химическая активность убывает в ряду F2 — Сl2 — Вr2 — I2—Аt2. Например, фтор реагирует с водородом со взрывом даже в темноте. Хлор без освещения не реагирует с водородом, но при нагревании или при ярком свете реакция протекает со взрывом (по цепному механизму). Бром с водородом взаимодействует только при нагревании, а иод — только при сильном нагревании, да и то не полностью, так как начинает идти обратная реакция разложения водородиодида.

    Различная окислительная способность галогенов проявляется и в их действии на биоорганические вещества и ткани живых организмов. Так, газообразный Сl2, являющийся сильным окислителем, представляет собой отравляющее вещество, вызывающее раздражение слизистых оболочек глаза, носа, гортани, тяжелое поражение легких. В отличие от хлора, иод — мягкий окислитель, обладающий антисептическим действием. Но при больших концентрациях иода и длительном применении возможны явления иодизма (насморк, крапивница, сыпь на коже и т.д.).

    Водородгалогениды. Среди соединений галогенов, в которых они проявляют степень окисления —1, одними из наиболее важных в практическом и теоретическом отношении являются водородгалогениды. Химическая связь в газообразных НГ — полярная ковалентная. Электронная пара, осуществляющая связь, сильно смещена к более электроотрицательному элементу — галогену.

    С точки зрения метода ВС химическая связь в НГ имеет одинаковый характер.

    Так как электронная структура всех водородгалогенидов одинакова, с ростом ионного радиуса галогена свойства НГ в ряду F — I монотонно изменяются (исключение составляет НF). Снижение прочности химической связи в молекулах НГ в ряду НF — НСl — НВr — НI находит отражение в уменьшении энтальпий диссоциации молекул НГ на атомы и в увеличении энтальпии и энергии Гиббса образования молекул НГ.

    Как и в случае свободных галогенов, причиной падения прочности связи в ряду НF—НСl—НВr—НI является понижение степени перекрывания орбиталей атомов водорода и галогенов.

    Дипольный момент, характеризующий полярность связи в ряду НF—НСl—НВr—НI, уменьшается от 6,4 до 1,3. Исходя из максимальной полярности НF, можно предположить: 1) растворимость водородгало-генидов в воде в этом ряду должна уменьшаться; 2) сила образующихся галогеноводородных кислот: НF (фтороводородная — плавиковая), НСl (хлороводородная — соляная), НВr (бромоводородная), НI (иодоводородная) также должна падать.

    Однако из экспериментальных данных следует, что степень ионизации, соответственно и сила кислот Н—Г в ряду от F к I, наоборот, возрастают. Растворимость от НF к НСl падает, но от НСl к НI растет.

    Причиной наблюдаемого изменения растворимости и силы водородгалогенных кислот является увеличение радиуса Г--ионов от F- к I- и уменьшение их гидратации.

    При растворении газообразного НГ в воде происходит гидратация При этом наблюдается разрыв полярной связи Н—Г и образование гидратированных ионов. Гидратированные протоны Н+ и анионы I- оказываются изолированными друг от друга Их взаимодействие становится чисто электростатическим. Но так как ионные радиусы в ряду F- — Сl- — Вr- — I- увеличиваются, то кулоновское взаимодействие между ионом гидроксония Н3О+ и галогенид-ионами в этом ряду уменьшается, что и приводит к увеличению степени ионизации галогеноводородных кислот в ряду НF—НСl—НВr—НI. Исходя из тех же соображений, можно объяснить и изменение растворимости НГ в этом ряду.

    Рассмотренный пример показывает, что правильный теоретический прогноз физико-химических свойств растворенных веществ возможен лишь при учете не только характеристик молекул этих веществ, но и их взаимодействия с растворителем.

    По мере увеличения межъядерного расстояния в ряду НF—НСl—НВr—НI увеличивается восстановительная активность водородгалогенидов и галогеноводородных кислот.

    Так, O2 восстанавливается иодоводородной кислотой уже при обычной температуре:

    О2 + 4Н+ + 4I- = 2Н2О + 2I2.

    Бромоводородная кислота взаимодействует с дикислородом медленнее, а соляная кислота вообще не окисляется дикислородом. Индифферентность аниона Сl- в кислой среде весьма существенна с точки зрения физиологии и медицины.

    Используя индифферентность хлорид-иона, его вводят в состав многих лечебных препаратов. Вводные растворы натрия хлорида — изотонический (мас. доля 0,9%) и гипертонические (мас. доля 3—5—10%) широко применяют в медицинской практике. Использование гипертонических растворов основано на законах осмоса.

    Хлорид-ион присутствует в организме в макроколичествах. В форме соляной кислоты является необходимым компонентом желудочного сока. Соляная кислота играет важную роль в процессе пищеварения.

    Желудочный сок (рН от 1 до 3) содержит катион Н+ и анионы Сl-, Н2РО4-, НSО4-. Однако концентрация хлорид-ионов Сl- значительно превышает концентрацию других анионов. Поэтому говорят, что соляная кислота содержится в желудочном соке и ее массовая доля составляет около 0,3%.



    Для выработки соляной кислоты в желудке необходим NаСl — поваренная соль. Вы деление соляной кис лоты из клеток слизистой оболочки (рис 8.10) желудка можно описать следующим уравнением:

    Н2СО3(кровь) + Сl- = НСO3-(кровь) + НСl(желудок)

    Соляная кислота желудочного сока не обходима для перехода фермента пепсина в активную форму. Пепсин обеспечивает переваривание белков путем гидролитического расщепления пептидных связей (отсюда название фермента).

    Кислородные кислоты хлора и их соли. Среди кислородных соединений галогенов наибольшее значение для практического применения имеют кислородные кислоты хлора и их соли. Кислородные кислоты хлора значительно менее устойчивы, чем их соли.

    Кислота состава НСlО, где атомы хлора проявляют степень окисления +1. в свободном состоянии не выделена. Она называется гипохлористой (хлорноватистой), а соли ее — гипохлоритами. Гипохлористая кислота получается при взаимодействии хлора с водой:

    Сl2 + Н2О ⇄ Сl- + НСlO + Н+.

    При этом один из атомов молекулы хлора присоединяет электрон от другого атома и восстанавливается, а другой атом хлора, отдавая электрон, окисляется:



    Реакция гидролиза хлора является обратимой и сильно смещена влево.

    Кислота НСlО настолько слабая, что даже угольной кислотой вытесняется из растворов гипохлоритов:

    NаСlO + Н2О + СО2 = NаНСО3 + НСlO

    Степень гидролиза хлора зависит от разбавления. Изменение общей концентрации хлора от 100 до 20 ммоль/л приводит к увеличению степени гидролиза от 0,33 до 0,73. Таким образом, хлорная вода всегда содержит наряду с молекулами Сl2 значительное количество НСlO.

    Гипохлористая кислота нестойка и даже в водном растворе распадается под действием света. Механизм распада можно представить в виде двух стадий:

    НСlO + hν = НСl + [О]

    2О → О2,

    где [О] — монокислород, активная форма кислорода.

    Гипохлористая кислота является очень сильным окислителем, именно ее образованием объясняется бактерицидное и отбеливающее действие хлорной воды. Выделяющийся при распаде НСlO монокислород обесцвечивает красители и убивает микроорганизмы.

    Гипохлористая кислота способна реагировать с органическими соединениями RН (R — органический радикал) по следующим схемам:

    RН + НСlО= RОН + НСl

    RН + НСlO = RСl + Н2O

    т.е. и как окислитель, и как хлорирующее вещество.

    Например, НСlO разрушает (денатурирует) белки, из которых состоят микроорганизмы. При этом хлор замещает атомы водорода пептидных связей белка:

    R—СО—NН—R1 + НСlO → R—СО—NСl—R1 + Н2О

    В результате нарушается вторичная структура белков, что приводит к гибели микроорганизмов. Поэтому с целью обеззараживания воды можно применять ее хлорирование. Отсюда следует, что бактерицидное действие водных растворов хлора связано как с образованием монокислорода, так и с хлорирующим действием гипохлористой кислоты. Образующееся в хлорированной воде небольшое количество соляной кислоты безвредно, и такая вода пригодна для употребления.

    Гипохлористая кислота более сильный окислитель, чем газообразный Сl2. Это можно доказать экспериментально: сухой хлор менее эффективно отбеливает ткани, чем «сырой», содержащий НСlO.

    Бром и иод, проявляя степень окисления +1, образуют также кислородные кислоты НВrО (гипобромистая) и НIO (гипоиодистая).

    Сила кислородсодержащих кислот в ряду Сl—Вr—I уменьшается вследствие роста ковалентного радиуса атомов галогенов в этом ряду, что сопровождается ослаблением ковалентной связи О—Г.

    Окислительные свойства НГО в ряду от Сl к I так же уменьшаются, а относительная устойчивость возрастает. Так, при нагревании НГО или действии на них света

    2НГО(р) = 2НГ(р) + О2(г).

    Химизм антисептического и дезинфицирующего действия иода во многом аналогичен действию хлора. Так, иод, подобно хлору, замещает водородные атомы у атомов азота в молекулах белков микроорганизмов, что приводит к их гибели:

    R—СО—NН—R1 + НIO → R—СО—NI—R1 + Н2О

    В медицинской практике, в быту и промышленности находят применение соли гипохлористой кислоты, а также препараты хлора и иода, отщепляющие активные формы галогенов.

    Если к хлорной воде добавить щелочь, то равновесие гидролиза хлора сместится вправо (принцип Ле Шателье) вследствие нейтрализации гипохлористой и соляной кислот:

    НСl + НСlO + 2КОН = КСl + КСlO + 2Н2О

    или в ионном виде:

    НСlO + ОН- = ОСl- + Н2О

    Полученный таким способом раствор калия хлорида и гипохлорита называется жавелевой водой. Она применяется для отбеливания тканей. Ее отбеливающие свойства обусловлены тем, что калий гипохлорит взаимодействует с оксидом углерода(IV) воздуха в присутствии воды:

    КСlO + Н2О + СО2 = НСlO + КНСО3

    или в ионном виде:

    СlО- + Н2О + СО2 = НСlO + НСО3-

    т.е. образуется гипохлористая кислота, которая разрушает красящие вещества.

    Действуя хлором на гидроксид кальция (II), получают смесь, называемую белильной или хлорной известью:

    2Са(ОН)2 + 2Сl2 = Cа(СlО)2 + 2Н2О + СаСl2

    Ее можно рассматривать как смешанную соль соляной и гипохлористой кислот, которой отвечает следующая формула строения:

    Хлорная известь — белый порошок с резким запахом, является сильным окислителем и применяется как дезинфицирующее, отбеливающее и дегазирующее средство.

    Во влажном воздухе СаОСl2 взаимодействует с оксидом углерода (IV), постепенно выделяя гипохлористую кислоту, которая, как рассматривалось ранее, разлагается с образованием монокислорода. НСlО выделяется также в результате гидролиза:

    Са(ОСl)Сl + Н2О ⇄ СаОН+ + НСlO + Сl-

    При действии на хлорную известь соляной кислотой происходит выделение свободного хлора:

    Са(ОСl)Сl + 2НСl = СаСl2 + Сl2 + Н2О

    Кислородсодержащая кислота НСlО2, в которой хлор проявляет степень окисления +3, называется хлористой, аее соли — хлориты. Обычно эту кислоту получают действием серной кислоты на хлорит бария:

    Ва(СlO2)2 + Н24 = 2НСlО2 + ВаSО4

    При нагревании гипохлористой кислоты легко протекает ее разложение с образованием хлорноватой кислоты НСlO3:

    3НОСl = 2НСl + НСlО3

    В молекуле хлорноватой кислоты атом хлора проявляет степень окисления +5.Соли хлорноватой кислоты называются хлоратами. Если не на холоду, а через горячий раствор щелочи, например КОН, пропускать хлор, то вместо КСlО образуется КСlO3:

    3Сl2 + 6КОН = 5КСl + КСlO3 + 3Н2О

    Продуктами реакции являются калий хлорид и калий хлорат — КСlO3 (бертолетова соль). Хлорноватая кислота в свободном состоянии не выделена, но в отличие от НСlО и НСlО2 известны ее концентрированные растворы (до 40%). Хлорноватая кислота является сильной кислотой). По окислительной активности НСlO3 уступает НСlО2.

    В больших количествах хлораты токсичны.

    Перхлорная (хлорная) кислота НСlО4 (атом хлора имеет степень окисления +7) — бесцветная жидкость, способная взрываться, но ее водные растворы вполне устойчивы. Перхлорная кислота — самая сильная из всех известных кислот.

    Окислительная активность НСlО4 меньше, чем у НСlO3, а кислотные свойства выражены сильнее. Соли хлорной кислоты — перхлораты в сухом состоянии являются мощными окислителями и используются для минерализации различных биоматериалов при определении содержащихся в них неорганических компонентов.

    Сравнивая свойства кислородных кислот хлора, можно сделать следующие выводы: по мере увеличения степени окисления хлора в ряду НСlО—НСlО2—НСlO3—НСlО4 сила кислот увеличивается.

    Такой характер изменения кислотных свойств объясняется тем, что по мере увеличения числа атомов кислорода в ряду НО—Сl, НО—СlO, НО—СlO2, НО—СlО3 прочность связи О—Н ослабевает. Резкое возрастание силы кислот с увеличением числа атомов кислорода (увеличение числа связей Сl—О) можно объяснить оттягиванием электронной плотности от связи Н—О на связь Сl—О.

    Сравнение окислительных свойств кислородных кислот хлора показывает, что в ряду анионов СlО- — СlО2- СlО3- — СlO4- уменьшается окислительная способность. Такой характер изменения окислительной активности можно объяснить повышением устойчивости в указанном ряду анионов, обусловленной увеличением числа электронов, принимающих участие в образовании σ- и π-связей.

    Комплексные соединения галогенов. Галогены входят в состав комплексных соединений как в качестве лигандов, так и комплексообразователей. Более склонны элементы VIIА-группы к комплексообразованию в качестве лигандов с ионами металлов. Обычно устойчивость галогенидных комплексов уменьшается в ряду F>Сl>Вr>I, но для некоторых ионов металлов наблюдается обратный порядок.

    Образование комплексных галогенидов имеет место и в живых организмах. Так, токсическое действие избытка фторид-ионов на организм связано с образованием фторидных комплексов с катионами металлов, входящих в активные центры ферментов Е:

    Е—Мn++ F- → [Е—М—F]n-1

    В результате блокирования свободной орбитали металла подавляется активность ферментов.

    Важными комплексными соединениями галогенов, применяемых в медицине, являются противоопухолевые препараты (химиотерапия). Активными считаются цис-диаминдихлороплатина (II) [Рt(NН3)2Сl2] и цис-диаминтетрахлороплатина (IV) [Рt(NН3)2Сl4].

    Известны комплексы, где комплексообразователем является галогенид-ион, а лигандами — молекулы галогенов. Такие комплексы состава [Г∙(Г2)x]- называются полигалогенидами. Так, увеличение растворимости молекулярного иода в воде в присутствии калия иодида связано с образованием комплексного иона:

    I- + I2 ⇄ [I(I2)]-

    Диссоциация комплекса (реакция обратимая) обеспечивает присутствие в растворе полииодида элементного иода, обладающего бактерицидными свойствами. Поэтому в медицинской практике используют раствор иода с добавлением КI.
    1   2   3   4   5   6


    написать администратору сайта