Главная страница

Курсовая работа. КР- Коксование Углей Баранрова Анастасия. Расчет материального, теплового баланса и гидравлического режима процесса коксования угольной шихты в коксовых печах


Скачать 0.81 Mb.
НазваниеРасчет материального, теплового баланса и гидравлического режима процесса коксования угольной шихты в коксовых печах
АнкорКурсовая работа
Дата01.01.2022
Размер0.81 Mb.
Формат файлаdoc
Имя файлаКР- Коксование Углей Баранрова Анастасия.doc
ТипКурсовая
#322639
страница2 из 9
1   2   3   4   5   6   7   8   9

Введение


Коксование угля

Увеличение цен на нефть и поиски альтернативных источников энергии не только привели к разработке новых технологий, но обратили внимание на другое, не менее полезное сырье - уголь. Самым важным для промышленности является коксующийся уголь.

Коксование - процесс переработки жидкого и твёрдого топлива нагреванием без доступа кислорода. При разложении топлива образуются твёрдый продукт -- кокс и летучие продукты.

Широко распространённый технологический процесс, появившийся в 18 столетии. Коксование состоит из стадий: подготовка к коксованию, собственно коксование, улавливание и переработка летучих продуктов.

В процессе нагрева угля без доступа воздуха происходят сложные химические и физико-химические превращения органической части материала угля, в результате которых выделяются парообразные и газообразные продукты и образуется твердый остаток - кокс.

Одновременно происходят физические явления, существенно влияющие на процесс коксообразования.

Первая стадия соответствует нагреву угля (шихты) до 200 °С. В энергетическом отношении межмолекулярные связи органических веществ углей прочнее внутримолекулярных. При указанном нагреве угля выделяются низкомолекулярные газы (СО2, СО, Н2О и др.) и снижается содержание групп ОН и СООН. При этом заметной деструкции основной структурной цепи макромолекул не происходит, но все же совершаются некоторые внутримолекулярные перегруппировки, определяющие дальнейшее направление термохимических превращений.

Вторая стадия соответствует нагреву от 200 до 300 - 350 °С. В этом интервале температур еще не происходит значительной потери массы, но усилившиеся тепловые колебания молекул способствуют частичному отщеплению Н2О, СО, СО2, СН4 и Н2. Совершаются значительные внутримолекулярные перегруппировки.

Третья стадия соответствует нагреву от 350 до 450 - 470 °С. В этом интервале температур происходит небольшая потеря массы и изменяется агрегатное состояние вещества - из сыпучего состояния оно переходит в пластическое (жидкоподвижное) и наблюдается незначительное смоловыделение. Подводимая извне энергия расходуется на разрыв химических связей (преимущественно эфирных и кислородных) внутри основной структурной цепи. Этот процесс сопровождается разукрупнением молекул (диссоциацией), в результате чего новые молекулы меньшего размера способны переходить в пластическое состояние. В зависимости от природы углей, степени их метаморфизма глубина этих превращений, а также температуры этой стадии процесса различны. В данной стадии наряду с процессами деструкции протекают и процессы синтеза (структурирования), однако процессы деструкции преобладают над процессами поликонденсации.

Четвертая стадия соответствует нагреву от 450 до 500 - 550. °С и сопровождается резким уменьшением массы угля в основном за счет выделения смолы. Происходит отверждение пластической массы, резко возрастает отношение С: Н, продолжается выделение низкомолекулярных газов. На данной стадии протекают преимущественно процессы поликонденсации, которые определяет деструкция, вызывающая возникновение активных центров для конденсации.

Пятая стадия соответствует нагреву от 500 - 550 до 850 - 900 °С и характеризуется постепенным уменьшением массы за счет выделения низкомолекулярных газов, в основном водорода. В результате дегидрирования образуются активные центры, происходит ассоциация (уплотнение) в твердой фазе. Резко увеличивается отношение С : Н, а также истинная плотность твердого остатка - кокса.

В интервале 500 - 550 °С, как указывалось выше, происходит образование полукокса - пластическая масса затвердевает и начинает приобретать вид и свойства кокса. По своей структуре полукокс уже не похож на уголь. Он потерял сыпучесть, приобрел пористое строение и способность образовывать куски (кусковатость). Полукокс отличается от кокса значительным выходом летучих веществ, темным цветом (кокс серебристо-стальной), меньшей прочностью и пористостью.

Отдельные стадии процесса коксообразования зарождаются в последовательном порядке одновременно у обеих стенок коксовой камеры и по мере проникновения тепла в глубь загрузки продвигаются к центральной осевой плоскости печи, где промежуточные слои (пластический, полукокс), перемещающиеся от стенок коксовой камеры, сближаются. При этом одноименные промежуточные зоны сходятся (а в пластическом состоянии сливаются), затем исчезают, переходя в последующее состояние.

При воздействии температуры и времени на угольную загрузку, находящуюся в камере коксования, вязкая пластическая масса оказывает большее или меньшее сопротивление эвакуации продуктов разложения, которые стремятся увеличить объем угольной загрузки (привести к ее вспучиванию); при этом может развиваться определенное давление распирания, которое зависит также от газопроницаемости слоев полукокса-кокса и густоты сети трещин, образующихся в них.

Газопроницаемость и вспучивание пластической массы зависят от вязкости угля в пластическом состоянии. Крупность и степень трещиноватости кокса, так же как и структура тела кокса, зависят не только от свойств исходных углей или состава шихт, но и от основной особенности процесса в современных печах - его послойности. Линейная скорость коксования колеблется от 27 - 30 до 40 мм/ч.

Шихта загружается в разогретую до высоких (1100 - 1200 °С) температур камеру. В процессе коксования происходит уменьшение высоты загрузки, то есть вертикальная усадка коксового пирога в результате уплотнения угольной засыпи и усадки образовавшегося полукокса-кокса.

Особенности коксующихся углей. Марки углей

Коксующийся уголь - это каменный уголь, из которого в условиях коксования получают кокс определенной прочности и крупности. Он представляет большую ценность для промышленности и пользуется активным спросом во многих отраслях. Так, коксующийся уголь используется как основное топливо при производстве стали и энергетики. Коксующиеся угли отличаются от других каменных углей свойством переходить в пластическое состояние и спекаться при воздействии высоких температур без доступа кислорода.

Коксующийся уголь в концентрированном и необогащенном виде характеризуется низкой зольностью (менее 10 %), незначительным содержанием летучих компонентов (от 15 до 37 %) и серы (менее 3,5 %). По сравнению с другими видами угля, коксующиеся угли обладают высокой температурой сгорания и характеризуются меньшим содержанием примесей. Соотношение составляющих веществ в разных месторождениях угля может немного отличаться. Это очень важно учитывать в процессе его коксования. Так, перед переработкой каменного угля обязательно определяется его состав, коксуемость, спекаемость и другие показатели.

Наибольшую ценность для промышленности предоставляют коксующиеся угли, которые используются в качестве технологического топлива во многих производственных отраслях народного хозяйства. Например, для выплавки чугуна. Главная особенность, которая отличает коксующийся уголь от энергетического - наличие витрена. Это зольная составляющая часть угля, которая образуется в результате разложения растений при отсутствии кислорода. Свойства витрена заключаются в способности плавиться и спекаться под воздействием высокой температуры. Таким образом, микрочастицы угля склеиваются в одну плотную массу. Чем больше концентрация витрена, тем выше качество коксования такого угля. Наибольшее количество плавких веществ содержится в таких марках угля: коксовые, газовые, жирные, отощенно-спекающиеся и коксовые жирные.

Под коксованием в общем виде понимают сложный процесс превращения топлива при нагреве до высоких температур без доступа воздуха. Характер этих превращений зависит от конечной температуры нагрева топлива.

Обычно коксование завершается в интервале 950-1050°С. Этот процесс называется высокотемпературным коксованием. Различают также низкотемпературное коксование, или полукоксование (500-600°С), и среднетемпературное коксование (750°С).

Конечная температура нагрева существенно влияет на выход и качество химических продуктов, а также на качество твердого остатка.

Качество кокса зависит от многих технологических факторов, в частности от степени измельчения угля, степени уплотнения шихты, содержания влаги , выхода летучих веществ, режима нагрева и др.

Материальный, тепловой балансы и гидравлический расчет обычно составляется при проектировании коксохимических заводов, при планировании производства и выборе режима коксования. Так, на действующих предприятиях составление баланса необходимо для учета перерабатываемого сырья и получаемых продуктов, для выявления возможных потерь и контроля над ведением технологического процесса. А расчет теплового баланса позволяет определять расход отопительного газа на коксование и рассчитать продукты горения газа. Расчет гидравлического режима предусматривает определение гидравлического сопротивления системы печей и нахождение давления в ее характерных точках.


  1. 1   2   3   4   5   6   7   8   9


написать администратору сайта