Главная страница
Навигация по странице:

  • 15. Электростатика. Напряженность поля. Потенциал

  • 17. Энергия электрического поля

  • ГДЗ по алгебре. Расчетно-графическое Задание N1_2019A. Расчетнографические задания по общей физике. 1


    Скачать 3.91 Mb.
    НазваниеРасчетнографические задания по общей физике. 1
    АнкорГДЗ по алгебре
    Дата09.03.2023
    Размер3.91 Mb.
    Формат файлаdoc
    Имя файлаРасчетно-графическое Задание N1_2019A.doc
    ТипЗадача
    #977292
    страница5 из 6
    1   2   3   4   5   6

    13. Первое начало термодинамики
    13.1. В цилиндре, изготовленном из плохо проводящего тепло материала, имеется подвижный поршень. Внутри цилиндра находится азот объемом 2 литра. На поршне лежит груз массой 10 кг. Если убрать груз, то газ расширится и поршень поднимется вверх. Найти работу расширения газа. Площадь поперечного сечения 10 см2. Постройте график зависимости давления газа от объема.

    13.2. Два моля идеального газа при температуре 300 К изохорически охладили, вследствие чего его давление уменьшилось в 2 раза. Затем газ изобарически расширили так, что в конечном состоянии его температура стала равной первоначальной. Найти количество тепла, поглощенного газом в данном процессе. Постройте рисунок.

    13.3. Три моля идеального газа, находившегося при температуре 273 К, изотермически расширили в 5 раз и затем изохорически нагрели так, что в конечном состоянии его давление стало равным первоначальному. За весь процесс газу сообщили количество тепла равное 80 кДж. Найти показатель адиабаты для этого газа. Постройте рисунок.

    13.4. В комнате размером 90 м3 воздух сменяется полностью через два часа. Какое количество теплоты требуется для обогревания воздуха в комнате за сутки, если температура воздуха в комнате должна быть 180 С, а наружный воздух имеет температуру –50 С? Принять, что средняя плотность воздуха 1.25 кг/м3 . Считать воздух идеальным газом. Постройте рисунок.

    13.5. Некоторую массу азота сжали в 5 раз (по объему) один раз адиабатически, другой раз изотермически. Начальное состояние газа в обоих случаях одинаково. Найти отношение соответствующих работ, затраченных на сжатие. Постройте рисунок.

    13.6. В закрытом сосуде 100 г азота и 200 г кислорода. Найти изменение внутренней энергии этой смеси газов при охлаждении ее на 25 К. Постройте рисунок.

    13.7. При изобарическом расширении азота была совершена работа 200 Дж. Какое количество теплоты было сообщено газу? Постройте рисунок.

    13.8. Один моль двухатомного идеального газа совершает процесс от начального состояния, при котором температура и объем соответственно равны 300 К и 20 л, к конечному, в котором температура и объем равны 315 К и 22.5 л. Процесс изображается на P - V диаграмме прямой линией. Найти совершенную системой работу и поглощенную теплоту. Постройте рисунок.

    13.9. Один килограмм воздуха при 293 К и давлении 105 Па сжимается, причем получается окончательное давление 106 Па. Определить работу, которая производится при сжатии воздуха, если: а) сжатие идет при постоянной температуре, б) сжатие происходит адиабатно. Постройте рисунок.

    13.10. Восемь граммов кислорода при температуре 300 К занимают объем 0.41 л. Вычислить работу газа в следующих случаях: а) газ адиабатно расширяется до 4.1 л, б) газ изотермически расширяется до объема 4.1 л, а затем охлаждается до той же температуры, которая получилась по окончании адиабатного расширения. Чем объясняется разница в величине этих работ? Постройте рисунок.

    14. Второе начало термодинамики, тепловые машины. Энтропия
    14.1. Некоторая масса водорода совершает цикл Карно. Найти коэффициент полезного действия цикла, если при адиабатическом расширении: а) объем газа увеличился в два раза; б) давление уменьшилось в 2 раза. Постройте рисунок цикла Карно.

    14.2. Один моль одноатомного идеального газа совершает в тепловой машине цикл Карно между тепловыми резервуарами с температурами 400 К и 300 К. Наименьший объем газа в ходе цикла 5 л, наибольший объем 20 л. Какую работу совершает эта машина за один цикл? Сколько тепла берет она от высокотемпературного резервуара за один цикл? Сколько тепла поступает за цикл в низкотемпературный резервуар? Постройте рисунок цикла Карно.

    14.3. Найти кпд цикла тепловой машины, состоящей из двух изохор и двух адиабат, если рабочим телом является воздух. Минимальный объем 10 литров, максимальный объем газа 15 литров. Постройте рисунок цикла тепловой машины.

    14.4. Двухатомный газ совершает цикл Карно. Определить кпд цикла, если известно, что на каждый моль этого газа при его адиабатическом сжатии затрачивается работа 2 кДж. Температура нагревателя 400 К. Постройте рисунок цикла Карно.

    14.5. Наименьший объем газа, совершающего цикл Карно, 12 дм3. Определить наибольший объем, если объем газа в конце изотермического расширения 60 дм3, в конце изотермического сжатия 19 дм3. Постройте рисунок цикла Карно.

    14.6. Цикл Карно совершается одним киломолем азота. Температура нагревателя 4000 С, холодильника 3000 С. Известно также, что отношения максимального объема к минимальному за цикл равно 10. Определить кпд цикла, количество теплоты, полученной от нагревателя и отданной холодильнику, а также работу за один цикл машины. Постройте рисунок цикла Карно.

    14.7. Смешиваются 5 л и 3 л разнородных, химически не реагирующих друг с другом газов, имеющих одинаковую температуру 300 К и давление 10 Па. Определить при этом изменение энтропии.

    14.8. Во сколько раз следует увеличить изотермически объем 4 моль идеального газа, чтобы его энтропия испытала приращение равное 23 Дж/К? Постройте график зависимости энтропии от объема.

    14.9. Гелий массой 1.7 г адиабатически расширяется в 3 раза и затем изобарически сжимается до первоначального объема. Найти приращение энтропии газа в этом процессе. Постройте график зависимости энтропии от объема.

    14.10. Найти приращение энтропии алюминиевого бруска массы 3 кг при нагревании его от температуры 300 К до 600 К, если в этом интервале температур удельная теплоемкость алюминия , где a= 0.77 Дж/(г К), b=0.46 мДж/(г К2 ). Постройте график зависимости энтропии от температуры.

    15. Электростатика. Напряженность поля. Потенциал

    (Специально для этого раздела см. Штыгашев А.А. Решение задач на компьютере. Электричество и магнетизм. Новосибирск: НГТУ, 2017.-145 с. В пособии есть процедуры решения ряда задач этого раздела)

    15.1. Тонкое проволочное кольцо радиуса R = 0.5 м обладает зарядом q =0.05 Кл, Найдите напряженность E поля на оси кольца на расстоянии z = 1,00 м от его центра. Постройте график модуля вектора напряженности поля E(z).

    15.2. Тонкое проволочное кольцо радиуса R = 0.35 м обладает зарядом q =0.045 Кл, Найдите напряженность E поля на оси кольца на расстоянии z = 0,50 м от его центра. Постройте график модуля вектора напряженности поля E(z).

    15.3. Три точечных заряда Q1 = 0.9ּ10-6 Кл, Q2 = 0.9ּ10-6 Кл, Q3 = 0.9ּ10-6 Кл расположены последовательно вдоль одной прямой и связаны двумя нитями длины L = 0.1 м каждая. Найдите натяжение нитей. Заряд Q2 находится посередине. Постройте график модуля вектора напряженности поля E(x).

    15.4. Три точечных заряда Q1 = 0.3ּ10-6 Кл, Q2 = 0.4ּ10-6 Кл, Q3 = 0.5ּ10-6 Кл расположены последовательно вдоль одной прямой и связаны двумя нитями длины L = 0.15 м каждая. Найдите натяжение нитей. Заряд Q2 находится посередине. Постройте график модуля вектора напряженности поля E(x).

    15.5. Заряд 0.5 нКл равномерно распределен по поверхности полого металлического шарика радиусом 2.5 см. Найти потенциал электрического поля в центре, на поверхности шарика и на расстоянии 5 см от центра. Построить график зависимости модуля вектора напряженности поля и потенциала от расстояния до центра шарика.

    15.6. Заряд 2.5 нКл равномерно распределен по поверхности полого металлического шарика радиусом 3.5 см. Найти потенциал электрического поля в центре, на поверхности шарика и на расстоянии 10 см от центра. Построить график зависимости модуля вектора напряженности поля и потенциала от расстояния до центра шарика.

    15.7. Тонкое плоское кольцо, внутренний и внешний радиусы которого равны 20 и 40 см, соответственно, равномерно заряжено до 0.6 мкКл. Определить потенциал поля в точке, лежащей на перпендикуляре, проведенном через центр кольца, и отстоящей на 25 см от центра этого кольца. Постройте график модуля вектора напряженности поля E(z).

    15.8. Тонкое плоское кольцо, внутренний и внешний радиусы которого равны 25 и 35 см, соответственно, равномерно заряжено до 0.8 мкКл. Определить потенциал поля в точке, лежащей на перпендикуляре, проведенном через центр кольца, и отстоящей на 50 см от центра этого кольца. Постройте график модуля вектора напряженности поля E(z).

    15.9. Полый стеклянный цилиндр равномерно заряжен с объемной плотностью мКл/м3. Внешний радиус цилиндра равен 1 см, внутренний 0.5 см. Используя теорему Остроградского-Гаусса, найдите зависимость модуля вектора напряженности Е и электрического смещения D от расстояния до оси цилиндра. Постройте графики зависимостей . Диэлектрическая проницаемость стекла равна 6.

    15.10. Полый стеклянный цилиндр равномерно заряжен с объемной плотностью мКл/м3. Внешний радиус цилиндра равен 2 см, внутренний 0.75 см. Используя теорему Остроградского-Гаусса, найдите зависимость модуля вектора напряженности Е и электрического смещения D от расстояния до оси цилиндра. Постройте графики зависимостей . Диэлектрическая проницаемость стекла равна 5.

    16. Проводники и диэлектрики в электрическом поле. Электроемкость

    16.1. Две первоначально незаряженные металлические пластины, находящиеся в вакууме, расположены параллельно на расстоянии 1 мм друг от друга. Одной пластине сообщили заряд 100 нКл. Площадь пластин 100 см2. Найти поверхностную плотность зарядов на обеих сторонах пластин.

    16.2. Стеклянный шар радиуса 2 см вносят в однородное элект-рическое поле с напряженностью 100 В/см. Вычислить суммарный положительный связанный заряд, появляющийся с одной стороны шара. Диэлектрическую проницаемость стекла принять равной 6. Начертить картину силовых линий в конденсаторе.

    16.3. Расстояние между пластинами плоского конденсатора равно 5 мм, разность потенциалов 150 В. На нижней пластине лежит плитка парафина толщиной 4 мм. Определить поверхностную плотность связанных зарядов этой пластинки. Диэлектрическая проницаемость парафина равна 2. Нарисовать картину силовых линий в конденсаторе.

    16.4. В плоский воздушный конденсатор вдвинули стеклянную пластинку так, что она образовала так, что она образовала с пластинами конденсатора угол = 450. Определить на какой угол от своего первоначального направления отклонятся силовые линии электрического поля конденсатора в пластине. Диэлектрическую проницаемость стекла принять равной 6. Нарисовать картину силовых линий в конденсаторе.

    16.5. Пластины плоского конденсатора площадью 0.01 м2 каждая притягиваются друг к другу с силой 30 мН. Пространство между пластинами заполнено слюдой. Найти заряды, находящиеся на пластинах, напряженность поля между пластинами.

    16.6. Плоский конденсатор содержит в качестве диэлектрика слой слюды толщиной 3 мм и слой парафинированной бумаги толщиной 2 мм. Найти емкость конденсатора, если площадь пластин конденсатора равна 5х5 см2 . Диэлектрическая проницаемость слюды и парафинированной бумаги равна 7 и 2, соответственно. Начертить картину силовых линий в конденсаторе.

    16.7. Плоский конденсатор содержит слой слюды толщиной 2 мм и слой парафиновой бумаги толщиной 1 мм. Найти разность потенциалов на слоях диэлектриков и напряженность поля в каждом из них, если разность потенциалов между обкладками конденсатора 220В. Диэлектрическая проницаемость слюды и парафинированной бумаги равна 7 и 2, соответственно. Начертить картину силовых линий в конденсаторе.

    16.8. Плоский конденсатор содержит слой слюды толщиной 2 мм и слой парафиновой бумаги толщиной 2 мм. Найти разность потенциалов на слоях диэлектриков и напряженность поля в каждом из них, если разность потенциалов между обкладками конденсатора 220В. Диэлектрическая проницаемость слюды и парафинированной бумаги равна 7 и 2, соответственно. Начертить картину силовых линий в конденсаторе.

    16.9. Конденсаторы емкостями 1 мкФ и 2 мкФ заряжены до разности потенциалов 10 В и 50 В, соответственно. Их соединили одноименными полюсами. Определить разность потенциалов после их соединения.

    16.10. Два одинаковых металлических диска диаметром 10 см расположены параллельно друг другу и разделены парафинированной бумагой т олщиной 0,2 мм. Диски сдвинуты так, что центр одного из них находится против края другого. Определите емкость такой системы. Диэлектрическая проницаемость парафинированной бумаги равна 2. Построить график зависимости емкости этой системы от h.

    17. Энергия электрического поля
    17.1. Площадь пластины плоского конденсатора 500 см2. Пластины конденсатора соединены с источником напряжения 12 В. Начертить график зависимости энергии поля конденсатора от расстояния d между пластинами, если d меняется от 0.1 до 3 мм.

    17.2. Кривая градуировки конденсатора переменной емкости задана уравнением пф, где угол поворота подвижных пластин конденсатора изменяется от 0 до 300 градусов. Конденсатор подключен к источнику напряжения 24 В. Определить заряд конденсатора, если угол поворота равен 60 градусов. Построить график зависимости энергии конденсатора от угла поворота .

    17.3. Кривая градуировки конденсатора переменной емкости задана уравнением пф, где угол поворота подвижных пластин конденсатора изменяется от 0 до 300 градусов. Конденсатор подключен к источнику напряжения 12 В. Определить заряд конденсатора, если угол поворота равен 50 градусов. Построить график зависимости энергии конденсатора от угла поворота .

    17.4. Пластины плоского конденсатора площадью 0.01 м2 каждая притягиваются друг к другу с силой 30 мН. Пространство между пластинами заполнено слюдой. Найти заряды, находящиеся на пластинах, напряженность поля между пластинами, объемную плотность энергии поля.

    17.5. Шар, погруженный в керосин, имеет потенциал 4.5 кВ и поверхностную плотность заряда 11.3 мкКл/м2. Найти радиус шара, заряд, емкость и энергию шара.

    17.6. Шар 1 радиусом 10 см, заряженный до потенциала 3 кВ, после отключения от источника напряжения соединяется проволочкой (емкостью которой можно пренебречь) сначала с удаленным незаряженным шаром 2, а затем, после отсоединения от шара 2, с удаленным незаряженным шаром 3. Шары 2 и 3 имеют одинаковые радиусы, равные 10 см. Найти: а) начальную энергию шара 1; б) энергии шаров 1 и 2 после соединения и работу разряда при соединении; в) энергии шаров 1 и 3 после соединения и работу разряда при соединении.

    17.7.Найти объемную плотность энергии электрического поля в точке, находящейся: а) на расстоянии 2 см от поверхности заряженного шара радиусом 1 см; б) вблизи бесконечной заряженной плоскости; в) на расстоянии 2 см от бесконечно длинной заряженной нити. Поверхностная плотность заряда шара и плоскости 16.7 мкКл/м2, линейная плотность заряда нити 167 нКл/м. Диэлектрическая проницаемость среды .

    17.8. Две концентрические сферические поверхности, находящиеся в вакууме, имеют равномерно распределенные одинаковые заряды 5 мкКл. Радиусы этих поверхностей 1 и 2 м. Найти энергию электрического поля, заключенную между этими сферами.

    17.9. Две концентрические сферические поверхности, находящиеся в вакууме, имеют равномерно распределенные одинаковые заряды 5 мкКл. Радиусы этих поверхностей 1 и 2 см. Найти энергию электрического поля, заключенную между этими сферами.

    17.10. Две концентрические сферические поверхности, находящиеся в вакууме, имеют равномерно распределенные одинаковые заряды 5 мкКл. Радиусы этих поверхностей 1 и 2 мм. Найти энергию электрического поля, заключенную между этими сферами.
    1   2   3   4   5   6


    написать администратору сайта