РЕФЕРАТ. Разработка математической модели реактора каталитического крекинга
Скачать 1.86 Mb.
|
Список публикаций 1. Nazarova G. Y. , Ivanchina E. D. , Ivashkina E. N. , Kiselyova S. V. , Stebeneva V. I. Thermodynamic analysis of catalytic cracking reactions as the first stage in the development of mathematical description // Procedia Chemistry. - 2015 - Vol. 15. - p. 342-349. 2. Nazarova G. Y. , Ivashkina E. N. , Ivanchina E. D. , Kiselyova S. V. , Stebeneva V. I. Formalization of hydrocarbon conversion scheme of catalytic cracking for mathematical model development (Article number 012062) // IOP Conference Series: Earth and Environmental Science. - 2015 - Vol. 27. - p. 1-6. 3. Назарова (Силко) Г. Ю. , Киселёва С. В. , Стебенева В. И. Оптимизация технологического режима процесса каталитического крекинга в зависимо- сти от состава перерабатываемого сырья // Актуальные проблемы науки и техники: материалы VIII Международной научно- практической конфе- ренции молодых учёных: в 3 т., Уфа, 16-18 Ноября 2015. - Уфа: УГНТУ, 2015 - Т. 1 - C. 310-313. 4. Назарова (Силко) Г. Ю. , Стебенева В. И. , Киселёва С. В. , Ивашкина (Ми- хайлова) Е. Н. , Иванчина Э. Д. Оценка влияния состава сырья на показате- ли работы установки каталитического крекинга с применением кинетиче- ской модели процесса // Ломоносовские чтения на Алтае: фундаменталь- ные проблемы науки и образования: сборник научных статей Междуна- родной конференции, Барнаул, 20-24 Октября 2015. - Барнаул: Изд-во АлтГУ, 2015 - C. 691-698. 5. Nazarova G. Y. , Kiselyova S. V. Determination of structural-group composition of catalytic cracking raw materials and products for development of mathematical model // Проблемы геологии и освоения недр: труды XIX Международного симпозиума имени академика М. А. Усова студентов и молодых ученых, посвященного 70- летнему юбилею Победы советского народа над фашистской Германией , Томск, 6-10 Апреля 2015. - Томск: Изд-во ТПУ, 2015 - Т. 2 - C. 815- 816. 103 6. Киселёва С. В. , Стебенева В. И. , Назарова (Силко) Г. Ю. Этапы построе- ния математической модели процесса каталитического крекинга // Про- блемы геологии и освоения недр: труды XIX Международного симпозиума имени академика М. А. Усова студентов и молодых ученых, посвященного 70-летнему юбилею Победы советского народа над фашистской Германией , Томск, 6-10 Апреля 2015. - Томск: Изд-во ТПУ, 2015 - Т. 2 - C. 221-222. 7. Stebeneva V. I. , Kiselyova S. V. , Nazarova G. Y. Reaction range definition of vacuum distillate cracking // Химия и химическая технология в XXI веке: материалы XVI Международной научно- практической конференции сту- дентов и молодых ученых, посвященной 115-летию со дня рождения про- фессора Л.П. Кулёва: в 2 т., Томск, 25-29 Мая 2015. - Томск: ТПУ, 2015 - Т. 2 - C. 231-233. 8. Назарова (Силко) Г. Ю. , Киселёва С. В. , Стебенева В. И. Определение ки- нетических параметров процесса каталитического крекинга // Химия и хи- мическая технология в XXI веке: материалы XVI Международной научно- практической конференции студентов и молодых ученых, посвященной 115-летию со дня рождения профессора Л.П. Кулёва: в 2 т., Томск, 25-29 Мая 2015. - Томск: ТПУ, 2015 - Т. 2 - C. 67- 68. 9. Киселёва С. В. , Назарова (Силко) Г. Ю. , Стебенева В. И. Термодинамиче- ский анализ процесса каталитического крекинга нефтяного сырья с ис- пользованием методов квантовой химии // Актуальные проблемы науки и техники: материалы VII Международной научно- практической конферен- ции молодых ученых: в 2 т., г.Уфа, 18-20 Ноября 2014. - Уфа: УГНТУ, 2014 - Т. 1 - C. 141-142. 10. Киселёва С. В. , Смирнова Т. В. , Белинская Н. С. Моделирование процес- сов глубокой переработки нефти // Химия и химическая технология в XXI веке: материалы XV Международной научно- практической конференции студентов и молодых ученых имени профессора Л.П. Кулёва: в 2 т., Томск, 26- 29 Мая 2014. - Томск: ТПУ, 2014 - Т. 2 - C. 46-48. 104 11. Стебенева В. И. , Назарова (Силко) Г. Ю. , Киселёва С. В. , Ивашкина (Ми- хайлова) Е. Н. Увеличение выхода светлых фракций в процессе каталити- ческого крекинга // Наукоемкие химические технологии: тезисы докладов VI Всероссийской молодежной научно-технической конференции, Москва, 11-12 Ноября 2015. - Москва: МИТХТ, 2015 - C. 23. 12. Stebeneva V. I. , Kiselyova S. V. , Nazarova G. Y. Mathematical modelling of the catalytic cracking process of vacuum distillate // Mendeleev 2015: Book of Absracts, Saint Petersburg, April 7-10, 2015. - Saint-Petersburg: SPbSU, 2015 - p. 360. 105 Список используемых источников 1. Vogt E.T.C., Weckhuysen B.M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis // Chem. Soc. Rev. – 2015. – № 44 – р.7342-7370. 2. Oil Gas J. – 2013. – P.2–59. 3. Murcia, A. A. Numerous Changes Mark FCC Technology Advance. Oil Gas J. – 1992. – 90. – P. 68. 4. Montgomery, J. The Grace Davison Guide to Fluid Catalytic Cracking Part One / W. R. Grace at al. – Baltimore. – MD. – 1993. 5. Otterstedt J. E., Gevert, S. B., Menon P. G. Fluid Catalytic Cracking of Heavy (Residual) Oil Fractions: a Review // Appl. Catal. – 1986. – 22. – P.159. 6. Catalyst Technology and Catalytic Solutions in Resid FCC / O’Connor, P. Ver- laan, J. P. J., Yanik, S. J. Challenges // Catal.Today – 1998. – 43. – P.305. 7. Pinheiro C. I. C. Fluid Catalytic Cracking (FCC) Process Modeling, Simulation and Control / Fernandes J.L. // Industrial & Engineering Chemistry Research. – 2013. – Р.43-65. 8. Wang,G., Xu,C., Gao J. Study of Cracking FCC Naphthaina Secondary Riser of the FCC Unit for Maximum Propylene Production // Fuel Process. Technol. – 2008. – 89. – P.864. 9. Li C., Yang C., Shan H. Maximizing Propylene Yield by Two Stage Riser Cat- alytic Cracking of Heavy Oil // Ind. Eng. Chem. Res. – 2007. – 46. – P.4914. 10. Kovin A.S., Sitdikova A.V., Rakhimov M.N. Catalytic cracking development and its role in modern russian refinery // Oil and Gas Business. – 2009. 11. Pitault I., Forissier M., Bernard J.R., Determination of kinetics constants of catalytic cracking by modeling microactivity test. // Can. J. Chem. Eng. – 1995. –Vol.73. – P.498–504 12. Baudrez E. Steady-state simulation of Fluid Catalytic Cracking riser reactors using a decoupled solution method with feedback of the cracking reactions on the flow/ Heynderickx G.J. // Chemical engineering research and design. – №88. – 2010. – P.290–303. 106 13. Wesseling, P., Principles of Computational Fluid Dynamics of Springer Series in Computational Mathematics // Springer. – Berlin. – Vol.29. – 2001. 14. Behjata Y. CFD analysis of hydrodynamic, heat transfer and reaction of three phase riser reactor / Shahhosseinia S. // Chemical engineering research and de- sign. – №89. – 2011. – P.978–989. 15. Sadeghzadeh J., Farshi A., Forsat K., A mathematical modeling of the riser re- actor in industrial FCC unit // Petrol.Coal. – 2008. – Vol.50 (2) – P.15–24. 16. Li T., Pougatch K., Salcudean M., Grecov D. Mixing of secondary gas injec- tion in a bubbling fluidized bed // Chem. Eng. Res. Des. – 2009 – Vol.87 – P.1451–1465. 17. Sedighi M. Experimental study and optimization of heavy liquid hydrocarbon thermal cracking to light olefins by response surface methodology / Keyvanloo K, Towfighi J. // Korean J Chem Eng. – 2010. – Р. 203 - 220. 18. Sedighi M. Kinetic study of steam catalytic cracking of naphtha on a Fe/ZSM- 5 catalyst / Keyvanloo Kr // Fuel. –2013 – Vol.109 – Р.432–438. 19. Kang X. An Introduction to the lump kinetics model and reaction mechanism of FCC gasoline / Guo X. // Energy Sources. – Part A, 35:1921–1928. – 2013. – P.343-358. 20. Barbosa A.C. Three dimensional simulation of catalytic cracking reactions in an industrial scale riser using a 11-lump kinetic / Lopes G.C. // Chemical engi- neering transactions. – Vol. 32. – 2013. – P.637 – 642. 21. P. Zhang, Numerical simulation on catalytic cracking reaction in two-stage ris- er reactors // China University of Petroleum. – Beijing, China. – 2005. – Р.129-153. 22. Randolph A.D. Theory of particulate processes: analysis and techniques of continuous crystallization / Larson M.A. // Academic Press. – London. – 1988. – Р.231-254. 23. CFD simulation of gas–solid two-phase flow and mixing in a FCC riser with feedstock injection / S. Chen, Y. Fan, Z. Yan, W. Wang, C. Lu // Powder Technology. – 28. –2016. – Р.29-42. 107 24. Li T., Guenther C., A CFD study of gas–solid jet in a CFB riser flow, AICHE J. Vol.58 – 2012 – P.756–769. 25. Benyahia S., Fine-grid simulations of gas–solids flow in a circulating fluidized bed, AICHE J. – 2012. – Vol.58 – P.3589–3592. 26. Wang W., Lu B., Zhang N., Shi Z., Li J. A review of multiscale CFD for gas– solid CFB modeling, Int. J. Multiphase Flow. – Vol.36. – 2010. – P.109–118. 27. Hong K., Shi Z., Wang W., Li J., A structure-dependent multi-fluid model (SFM) for heterogeneous gas–solid flow // Chem. Eng. Sci. – Vol.99. – 2013. – P.191–202. 28. Structure-dependentmulti-fluidmodel formass transfer and reactions in gas– solid fluidized beds / Liu C., Wang W., Zhang N., Li J. // Chem. Eng. Sci. – Vol.122. – 2015. – P.114–129. 29. Ahsan M. Prediction of gasoline yield in a fluid catalytic cracking (FCC) riser using k-epsilon turbulence and 4-lump kinetic models: A computational fluid dynamics (CFD) approach / Journal of King Saud University – Engineering Sciences – 2015. – P.130-136. 30. Wang, G., Li, Z., Liu, Y.D., Gao, J., Xu, C., Lan, X., Ning, G., Liang, Y., 2012. FCC-catalyst coking: sources and estimation of their contribution during coker gas oil cracking process. Industrial & Engineering Chemistry Research, – Vol.51 (5), – P.2247–2256. 31. Guisnet, M., Ribeiro, F.R., Deactivation and Regeneration of Zeolite Catalysts. World Scientific Publishing Company, – 2011. 32. Wang, L., Yang, B., Wang, Z., 2005. Lumps and kinetics for the secondary re- actions in catalytically cracked gasoline. Chemical Engineering Journal 109, – P.1–9. 33. Gupta, R., Kumar, V., Srivastava, V.K., 2005. Modeling and simulation of fluid catalytic cracking unit // Reviews in Chemical Engineering, – 21 (2), – P.95–131. 108 34. Corella J. On the Modeling of the Kinetics of the Selective Deactivation of Catalysts. Application to the Fluidized Catalytic Cracking Process // Ind. Eng. Chem. Res. – 2004. – Vol.43. – P.4080-4086. 35. Unsteady-state kinetic simulation of naphtha reforming and coke combustion processes in the fixed and moving catalyst beds / A.N. Zagoruiko, A.S. Belyi, M.D. Smolikov, A.S. Noskov // Catalysis Today. – Vol. 220-222. – P.168-177. – 2014. 36. Modeling fluid catalytic cracking risers with special pseudo-components / J. Zhang, Z. Wang, H. Jiang, J. Chu, J. Zhou, and S. Shao // Chemical Engineer- ing Science. – 2013. – Vol.102. – P.87-98. 37. Ахметов С.А. Технология переработки нефти, газа и твердых горючих ископаемых / Ишмияров М.Х., Кауфман А.А. – СПб.: Недра, – 2009. – C.828. 38. Stull D, Westrum E, Sinke G. The Chemical Thermodynamics of Organic Compounds // New York. – 1969. 39. Thermodynamic analysis of catalytic cracking reactions as the first stage in the development of mathematical description / Nazarova G.Y. , Ivanchina E.D. , Ivashkina E.N. , Kiselyova S.V. , Stebeneva V.I. // Procedia Chemistry. - 2015 - Vol. 15. - p. 342-349. 40. Formalization of hydrocarbon conversion scheme of catalytic cracking for mathematical model development / Nazarova G.Y., Ivanchina E.D., Ivashkina E.N., Kiseleyova S.V., Stebeneva V.I. // IOP Conf. Series: Earth and Environ- mental Science. – 2015. – Vol. 27. – P. 1-6. 41. Разумов И.М. Псевдоожижение и пневмотранспорт сыпучих материалов. — Москва: Химия.– 1972. — С.240. 42. Рудин М.Г., Сомов В.Е., Фомин А.С / Карманный справочник нефтепере- работчика. 2-е изд., перераб. – Москва: ЦНИИТЭнефтехим. – 2004. – C.336. 43. Павлов К.Ф.. Примеры и задачи по курсу процессов и аппаратов химиче- ской технологии : учебное пособие для вузов / К. Ф. Павлов, П. Г. Роман- 109 ков, А. А. Носков. — 10-е изд., перераб. и доп.. — репринтное издание. — Москва: Альянс, 2013. — C.576. 44. Хаджиев С.В. Крекинг нефтяных фракций на цеолитсодержащих катали- заторах / под ред. Хаджиева С.Н. – М.: Химия. – 1982. – С.280. 45. Ульянов Б.А.,Бадеников В.Я, Ликучев В.Г. Процессы и аппараты химиче- ской технологии В примерах и задачах. — Ангарск: Издательство Ангар- ской государственной технической академии. – 2006 г. – C.743. 46. Основные процессы и аппараты химической технологии. Пособие по про- ектированию : учебное пособие / под ред. Ю. И. Дытнерского. — Изд. стер. — Москва: Альянс. – 2015. — C.493. 47. Генеральное соглашение между общероссийскими объединениями проф- союзов, общероссийскими объединениями работодателей и Правитель- ством Российской Федерации на 2014 - 2016 годы от 25 декабря 2013 г., 14 с. 48. Федеральный закон Российской Федерации от 28 декабря 2013 г. N 426- ФЗ «О специальной оценке условий труда» 49. Федеральный закон от 22.07.2008 N 123-ФЗ (ред. от 13.07.2015) "Техни- ческий регламент о требованиях пожарной безопасности" 50. Федеральный закон от 21.07.1997 N 116-ФЗ (ред. от 13.07.2015) "О про- мышленной безопасности опасных производственных объектов" 51. Правила по охране труда при эксплуатации электроустановок; приказ Минтруда России от 24.07.2013 N 328н, зарегистрировано в Минюсте России 12.12.2013 N 30593 52. Инструкция по устройству молниезащиты зданий, сооружений и про- мышленных коммуникаций СО 153-34.21.122-2003. 53. СанПиН 2.2.4.548–96. Гигиенические требования к микроклимату произ- водственных помещений 54. Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки: санитарные нормы СН 2.2.4/2.1.8.562-96 110 утверждены Постановлением Госкомсанэпиднадзора России 31 октября 1996 г. № 36. Москва. 55. Производственная вибрация, вибрация в помещениях жилых и обще- ственных зданий: санитарные нормы СН 2.2.4/2.1.8.566-96: утверждены Постановлением Госкомсанэпиднадзора России от 31 октября 1996 г. № 40. Москва. 56. ГН 2.2.5.1313-03 Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны 57. Технический регламент О безопасности средств индивидуальной защиты 58. Нормы и условия бесплатной выдачи работникам, занятым на работах с вредными условиям труда, молока или других равноценных пищевых продуктов, которые могут выдаваться работникам вместо молока 59. ГОСТ 12.1.005-88 Общие санитарно-гигиенические требования к воздуху рабочей зоны 111 Приложение А (обязательное) Раздел 1 Обзор литературы Студент: Группа ФИО Подпись Дата 2КМ41 Киселёва Светлана Владимировна Консультант кафедры (аббревиатура кафедры) : Должность ФИО Ученая степень, звание Подпись Дата Ассистент Назарова Галина Юрьевна Консультант – лингвист кафедры ИЯПР: Должность ФИО Ученая степень, звание Подпись Дата Доцент Сыскина Анна Алек- сандровна к.ф.н. 112 1. Review of the literature Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry and produces the majority of the world’s gasoline. The pro- cess is in operation at over 300 out of a total of 646 refineries, as in the beginning of 2014. It is important to note that FCC is not the only conversion process used in oil refineries, as there are also e.g. hydrocracking units. Fig. 1 provides an overview of the different conversion processes in use in oil refineries as in the beginning of 2014, expressed as both the number of barrels of crude oil processed per day and the num- ber of refineries utilizing the processes. A number of oil refineries use multiple con- version technologies, and some refineries even have more than one FCC unit. Apart from producing gasoline, the FCC unit is also a major producer of propylene and, to a lesser extent, raw materials for petrochemical processes [1, 2]. Figure 1 – (a) Installed capacities for the major conversion processes in refineries worldwide, in million barrels per day. (b) Number of refineries in which major conversion processes are installed. Refineries can have more than one technology installed. Data as of 2013, from ref. 1. Color-coding: fluid catalytic cracking (FCC): blue; hydrocracking: red; coking: green; thermal operations: purple; and resid hydrotreating: light blue. 1.1. Modern technology of catalytic cracking process Fluid Catalytic Cracking development started in the 1930's following the dis- covery that, under proper conditions, finely divided solids could be made to flow like liquids. Such small particles offered advantages in heat transfer and mass diffusion 113 over the large catalyst pellets used in other processes. For catalytic cracking, fluid phase seemed to be very advantageous also from the point of view of very quick heat transfer because of strong endothermic effect during cracking of feed and strong exo- thermic effect in the coke-burning regeneration. Since the first FCC (fluid catalytic cracking) unit started operation in 1942, several design improvements have been made. Indeed, almost all of the components of the FCC unit have been modified to improve performance. The first unit in opera- tion was model I from Standard Oil Development Co. (SOD), now ExxonMobil. This unit was composed of multiple small vessels and had a catalyst up-flow configuration in both the reactor and regenerator vessels. The regenerator operated at low pressures, and external cyclones were used. In 1947, UOP built the first unit that used the con- cept of spent catalyst stripping: the stacked FCCU (Figure А.1a). This unit had small- er and improved regenerators, where the regenerated catalyst was lifted to a bed cracking reactor by vaporized feed and the spent catalyst flown by gravity to the re- generator [3]. In 1951, M. W. Kellogg introduced the Orthoflow unit, composed by a low elevation regenerator and a high reactor with an internal stripper. In this model, the catalyst flow was made through internal vertical straight tubes, a standpipe, and a lift line, controlled by plug valves. Another FCC configuration, called model IV, was in- troduced by SOD in 1952. This unit presented smaller vessels arranged side by side (Figure 1b) and was operated at higher pressures and internal velocities; catalyst flow control was done by changes in the differential pressure between the reactor and re- generator (U-bend concept) and by changes in the aeration in the spent catalyst en- trance to the regenerator. The riser cracking unit was first proposed by Shell in 1957, which, together with the introduction of high-activity zeolite catalysts in the 1960s, definitively established this configuration. Since then, all new FCC unit designs have included riser cracking reactors [3]. The improvement of FCC catalysts (e.g., through addition of combustion promoters) allowed further developments in the FCCs’ regeneration systems, which 114 made possible the reduction of coke on the regenerated catalyst to <0.1% wt. Kel- logg’s Orthoflow F process, with two stages of regeneration in the same vessel, ap- peared in 1973. Later, in 1978, UOP introduced a typical side-by-side unit with a high-efficiency regenerator unit. This regeneration system was designed to operate in the fast fluidization regimen and was composed by a combustor and a lift of small di- ameter that discharge the catalyst and the combustion gases in a disengagement ves- sel. In 1979, Exxon introduced the Flexicracking unit (Figure А.1c) that main- tained a side-by-side arrangement but included a riser with an elevated strip- per/disengager vessel and a lower elevation regenerator. During the 1980s, the increasing need to process heavier feeds brought new developments to existing FCC designs. In 1981, Total Petroleum USA developed its residue FCC unit (R2R (react to react) unit, now licensed by Axens/IFP and Stone & Webster), presenting a side-by-side configuration with a two-stage regeneration sys- tem without catalyst cooling, which occurs in two separate stacked vessels, and a straight riser reactor with a proprietary feed injection system and an internal exit sep- aration system (Figure А.1d). Further developments continued with improved designs focusing on atmospheric residue conversion, proposed by UOP (UOP’sResidue Pro- cessing) and Petrobras (Petrobras Advanced Converter). This later technology en- compasses a set of proprietary developments, namely, the PASS closed cyclones sys- tem and the Ultramist optimized feedstock injection system, combined with im- provements in the riser and optimization of the mechanical design of the equipment [7-9]. 115 Figure А.1– Scheme of some FCC unit designs: (a) UOP stacked unit; (b) model IV; (c) Exxon Flexicracking unit; (d) R2R residue unit (adapted from Montgomery) The main licensors of catalytic cracking are foreign companies (Table A.1) but experience of JSC “TAIF-NK” in Nizhnekamsk shows that there are modern 116 competitive catalytic cracking technologies in Russia. There was FCC unit built with hydrotreatment of gasoline with VGO processing capacity 880 thousands t/year de- veloped by VNIPIneft JSC and VNIINP JSC jointly with GrozNII. It performed with high efficiency and potential to increase capacity which will reach 1 million t/year after modernization [10]. Table A.1 – Main licensors of catalytic cracking Licensor Process, features UOP LLC (in collaboration with BAR- CO) MSCC (Millisecond Catalytic Crack- ing, >6 units) FCC RFCC (Residue FCC) PETROFCC (Petrochemistry FCC) ABB Lummus Global Inc FCC (>13 units) Kellog Brown & Root, Inc. FCC (>120 units) Shell Global Solution Inter- national B.V. FCC (>30 new units and >25 re- vamped units) Stone & Webster Inc., Shaw Group FCC (>26 new units and >100 re- vamped units) DCC (Deep Catalytic Cracking, >6 units) Residue FCC In spite of big lifetime of catalytic cracking process it still has development potential. There are different directions of improvement: 7) development of new catalysts with improved products yield and quality (higher gasoline octane number, lower sulfur content etc.); 8) revamping of reactor section in order to improve products yield and quality: fast separation systems, reactors with very short contact time (SCT, MSCC etc.), high performance feed input devices; 9) improvement of regeneration process (different regenerator designs for even regeneration with minimal catalyst deactivation, catalysts with CO afterburning pro- moters, special additives for regeneration); 10) optimization of energy balance of the unit; 117 11) using of special catalytic cracking processes to produce light olefins (DCC) or to process heavy feedstock (R2R, HOC, RCC etc.); 12) development conditions and promoters for regeneration in order to de- crease emissions with regeneration gases. Modernization of Russian refineries based on catalytic cracking with maximum application of domestic technologies will make it possible to increase high-quality fuels production in shortest time with relatively low capital expenditures [10]. |