Главная страница

Ибрахим Саид 4 тему (1). Развитие математических методов теории эволюции 3 Роль компьютера в математическом анализе жизни 4


Скачать 0.68 Mb.
НазваниеРазвитие математических методов теории эволюции 3 Роль компьютера в математическом анализе жизни 4
Дата06.04.2023
Размер0.68 Mb.
Формат файлаdocx
Имя файлаИбрахим Саид 4 тему (1).docx
ТипРеферат
#1042357
страница5 из 7
1   2   3   4   5   6   7

Математические модели в биологии


Человек всегда испытывал потребность понимать, контролировать и предсказывать поведение всего сущего. Для этого ученые всех времен и народов создавали модели окружающего мира, то есть представления или абстракции некоторой системы или явления.

Модель обладает несколькими полезными свойствами. С одной стороны, она позволяет понять и объяснить то или иное явление – в качестве примера можно привести модель клеточного цикла или метаболизма глюкозы. С другой стороны, что особенно важно, она позволяет предсказать состояние или поведение изучаемой системы в будущем: это может быть прогнозирование климата или описание какой- либо гипотетической ситуации, например, воздействия аварии на атомной электростанции на флору и фауну региона.

Также компьютерное моделирование позволяет ученым проверить те или иные гипотезы. К примеру, можно провести эксперимент, опровергающий гипотезу о происхождении жизни или позволяющий рассмотреть механизм эволюции конкретного вида. Модель может использоваться и для того, чтобы вдохновить, например, группу инженеров на поиски решения задачи. В любом случае построение моделей очень важно, как в силу их практической ценности, так и из-за того, что моделирование – единственный способ, который позволяет постепенно выстроить картину окружающего мира.

В биологии, как и в других науках, наиболее полезны математические модели: они в абстрактной форме представляют систему или явление с использованием языка и формальных средств математики. К примеру, в модели клетки, сердца или экосистемы составные части объекта и взаимодействие между ними представлены математическими выражениями. Эти выражения связывают множество входных переменных I1, I2, …, Inи выходную переменную О. Входные переменные обозначают величины, которые можно наблюдать (и измерить) в ходе эксперимента. Обычно одна из этих переменных – время, t. Она обозначает момент времени, в который были получены входные значения I1(t), I2(t), …, In(t). Как только эти значения определяются экспериментально или любым другим способом (например, на основе каких-либо теоретических предпосылок), они вводятся в модель. Используя математические выражения модели, ученый определяет значение выходной переменной O(t), которое отражает какое-либо свойство системы. Обычно этим свойством является состояние или поведение системы в определенный момент времени t.

В математических выражениях используются параметры. В отличие от входных и выходных переменных, они обозначают величины, которые нельзя наблюдать в ходе эксперимента напрямую, например, уровень рождаемости, константа распада, скорость биохимической реакции и т. д. Как следствие, значения параметров устанавливаются в лаборатории или при полевых исследованиях.

Для определения приближенного значения параметра используются сложные статистические методы. Однако иногда это значение уже известно: его можно найти в таблицах, опубликованных другими исследователями. В качестве примера можно привести калорийность продуктов в модели, связанной с диетами. Другие известные параметры – это сезонный уровень заболеваемости гриппом или время роста культуры бактерий. Параметры связывают входные переменные I1(t), I2(t), …, In(t) с выходной переменной O(t) посредством выражений математической модели.



Рисунок 11 Математическая модель, входные переменные (I) и выходная переменная (О)

Компьютер как пробирка


Моделирование – одно из основных понятий современной науки – заключается в прогнозировании будущего состояния системы, O(t+1), на основе определенной вычислительной модели. К примеру, прогноз погоды на ближайшие дни основан на вычислительной модели климата, прогнозирование численности волков и зайцев в определенном регионе производится на основе модели «хищник – жертва», а число людей, которые заболеют сезонным гриппом, можно спрогнозировать с помощью вычислительной модели эпидемии гриппа. Таким образом, для составления прогнозов требуется вычислительная модель.

В общем случае такая модель – это компьютерная программа, написанная на одном из языков программирования (Visual Basic, C/C++, Java и т.д.). Моделирование заключается в том, чтобы заставить математическую модель работать на компьютере в поисках ответа на вопросы, касающиеся будущего состояния системы: «что произойдет, если...?». Таким образом, компьютер превращается в пробирку, подлинную лабораторию, где можно исследовать явления, которые нельзя изучить при полевых исследованиях или в лаборатории.

Существует несколько способов компьютерного моделирования. Во-первых, оно может заключаться в определении начальных условий и будущего состояния системы. Начальные условия – это значения входных переменных модели (они известны), на основе которых выполняется прогноз. Ученые называют отправную точку модели нулевым моментом времени, поэтому начальные условия записываются так: I1(0), I2(0), …, In(0). К примеру, если на сегодняшний день свиным гриппом заболели 1247 человек, из которых 1240 выжили, семь – умерли, то начальные условия таковы: I1(0)=1247, I2(0)=1240, I3(0)=7. Зная эти начальные условия и применив вычислительную модель эпидемии, можно задаться вопросом: сколько человек заболеют гриппом через семь дней?

Во-вторых, моделирование может заключаться в изменении параметров и оценке воздействия новых значений на будущее состояние системы. Что произойдет в примере со свиным гриппом, если вместо уровня смертности в 0,78% использовать значение в 2,96 %? Каким в этом случае будет уровень смертности через месяц?

В-третьих, моделирование может заключаться в определении будущего состояния системы при заданных начальных условиях и некоторых значениях определенных параметров.
1   2   3   4   5   6   7


написать администратору сайта