Ибрахим Саид 4 тему (1). Развитие математических методов теории эволюции 3 Роль компьютера в математическом анализе жизни 4
Скачать 0.68 Mb.
|
Сравнение моделейВ некоторых ситуациях моделирование может состоять в прогнозировании явления путем сравнения прогнозов, полученных с помощью различных вычислительных моделей. Такая ситуация может сложиться, когда одно явление описывается несколькими математическими моделями. К примеру, можно сравнить различные математические модели климата для одной и той же ситуации, смоделировать поведение колонии муравьев с помощью разных вычислительных моделей или определить число хищников и жертв, сравнив данные, полученные с использованием клеточных автоматов, с данными, полученными по уравнениям Лотки - Вольтерры. Рисунок 12 Увеличение объема метана в земной коре и стратосфере согласно вычислительной модели в сравнении с другими моделями, описывающими это же явление Некоторые примеры использования математики в биологии.Рассмотрим важные примеры использования математики в биологии. Мы поговорим о матрице Лесли, клеточных автоматах, модели «хищник – жертва» и клеточных автоматах. Изучение популяций оленей, белоки других животных. Матрица ЛеслиПатрик Лесли родился в 1900 году. Он был экологом и работал в Оксфорде, в организации, занимавшейся подсчетом численности животных. В 1945 году Лесли опубликовал модель структуры популяции, которая нашла широкое применение в экологии популяций и демографии. Эта модель позволяет определить рост популяции с учетом ее возрастной структуры. Сведя воедино две функции (первая описывала рождаемость, вторая – уровень смертности), ученый определил матрицу популяции, известную под названием матрицы Лесли. Эта матрица является квадратной, то есть имеет одинаковое число строк и столбцов, совпадающее с числом составляющих некоторого вектора. Также в этой модели предполагается, что популяция является изолированной и не пополняется в результате миграции. Поскольку модель применяется для животных, которые размножаются половым путем, в ней учитываются только самки: число самцов на рост популяции не влияет. Составляющие вектора, о котором мы упоминали выше, обозначают число особей определенного возраста. Объясним модель Лесли на следующем примере. Предположим, что в природной среде, например, в национальном парке или заповеднике, была зафиксирована следующая численность самок оленей, которые в момент времени t (связанный, к примеру, с датой выборки) принадлежали к возрастным группам под номерами 0, 1, 2, 3 и 4: Обратите внимание, что 0, 1, 2, 3 и 4 – всего лишь обозначения, указывающие возрастные интервалы, к примеру, в годах, от меньшего возраста к большему. В нашем примере предполагается, что оленей можно разделить на пять возрастных групп согласно ожидаемой продолжительности жизни. Также предполагается, что плодовитость всех особей известна, то есть экологи, работающие в заповеднике, знают среднее число детенышей у самок определенного возраста. Если рассмотреть всю популяцию, то число новорожденных оленей, которые включаются в возрастную группу, образованную самыми молодыми особями в следующем поколении (то есть в момент времени t + 1), будет равно:
Теперь будем учитывать смертность оленей, вызванную различными причинами. В этом случае особь не перейдет из текущей возрастной группы в следующую, так как не достигнет нужного возраста. Обозначим через s0, s1, s2и s3 долю выживших особей в каждой возрастной группе, которые, таким образом, перейдут в следующую возрастную группу. Это число выражается в долях единицы и обозначает вероятность. Как следствие, в рассматриваемой модели число самок, перешедших в следующую возрастную группу, определяется формулой: В математической биологии модель Лесли иллюстрирует очень элегантную и оригинальную формулировку. Все представленные выше выражения сведены в матрицу перехода L, которая получила название матрицы Лесли: Представим в виде вектора Nt для поколения t число самок в каждой возрастной группе, то есть Представим в виде вектора Nt+1 число самок в каждой возрастной группе для следующего поколения t+1: В конце концов объединим матрицу L и векторы Nt и Nt+1, описанные выше, в одно выражение в матричной нотации. Сразу же увидим, что для получения возрастной структуры популяции, начиная от поколения t и заканчивая следующим поколением, t + 1, достаточно найти произведение вектора, соответствующего поколению t, и матрицы L: В сокращенном виде это записывается так: Nt+1 = L Nt Не описывая пока подробности выполнения операций над матрицами, предположим, что экспериментальные данные о возрастах популяции оленей таковы: 190, 80, 56, 18 и 6 (численность особей от меньшего возраста к большему). Матрица L будет выглядеть следующим образом: Если мы умножим вектор с исходными данными на матрицу L, получим следующий вектор: Если мы умножим полученный вектор на матрицу L, получим новый вектор, который затем вновь умножим на матрицу L, и т. д. По прошествии 10 единиц времени, рассчитав последовательные итерации модели, получим, что общая численность популяции будет разделена по возрастным группам (от меньшего возраста к большему) в следующей пропорции: 48, 29, 16, 6 и 4 %. |