Главная страница
Навигация по странице:

  • Министерства здравоохранения Российской Федерации (Ф ГБОУ ВО НГМУ Минздрава России )Кафедра медицинской химии

  • Химический состав и формирование костной ткани. Факторы, влияющие на метаболизм костей.

  • Основная часть 1.Химический состав костной ткани

  • Неорганический состав костной ткани.

  • Органический матрикс костной ткани

  • 2. Формирование костной ткани

  • 3.Факторы, влияющие на метаболизм костей (витамины и гормоны)

  • Аскорбиновая кислота

  • реферат химия. Реферат по теме Химический состав и формирование костной ткани. Факторы, влияющие на метаболизм костей


    Скачать 399.7 Kb.
    НазваниеРеферат по теме Химический состав и формирование костной ткани. Факторы, влияющие на метаболизм костей
    Дата24.04.2022
    Размер399.7 Kb.
    Формат файлаdocx
    Имя файлареферат химия.docx
    ТипРеферат
    #493221


    Федеральное государственное бюджетное образовательное учреждение высшего образования

    «Новосибирский государственный медицинский университет»

    Министерства здравоохранения Российской Федерации

    ГБОУ ВО НГМУ Минздрава России)

    Кафедра медицинской химии


    Реферат по теме:

    Химический состав и формирование костной ткани. Факторы, влияющие на метаболизм костей.

    (обзор литературы)

    Выполнила:

    студентка 1 курса

    педиатрического факультета

    14 группы

    Шилкина Александра Кирилловна
    Проверила:

    д.б.н., доцент Гимаутдинова О.И.

    Новосибирск – 2021

    СОДЕРЖАНИЕ

    Содержание……………………………………………………………………...2

    Введение…………………………………………………………………………..3

    Основная часть……………………………………………………………….….4

    1. Химический состав костной ткани…………………………………………..4

    2. Формирование костной ткани……………………………………………….7

    3. Факторы, влияющие на метаболизм костей…………………………………9

    Заключение……………………………………………………………………….13

    Список литературы……………………………………………………………..14

    Приложение……………………………………………………………………..15

    Введение

    Костная ткань отличается особыми механическими свойствами из-за характерного для нее признака – обезыствления межклеточного вещества. Из костной ткани состоят все части скелета, которые выполняют опорную, защитную и двигательную функцию. Также костная ткань является депо для минеральных веществ и имеет свой химический состав. Химический состав влияет на процесс формирования костной ткани и на метаболизм, который в свою очередь способствует обмену веществ в организме.

    Основная часть
    1.Химический состав костной ткани
    Изучение химического состава костной ткани связано со многими трудностями, так как для выделения органического матрикса требуется провести деминерализацию кости. Потому что, содержание и состав органического матрикса подвержены значительным изменениям в зависимости от степени минерализации костной ткани.
    Известно, что при продолжительной обработке кости в разведенных растворах кислот ее минеральные компоненты растворяются и остается гибкий мягкий органический остаток (органический матрикс), сохраняющий форму интактной кости. Межклеточный органический матрикс компактной кости составляет около 20%, неорганические вещества – 70% и вода – 10%. В губчатой кости преобладают органические компоненты, которые составляют более 50%, на долю неорганических соединений приходится 33–40%. Количество воды сохраняется в тех же пределах, что и в компактной кости (Ю.С. Касавина, В.П. Торбенко).

    По данным А. Уайта, неорганические компоненты составляют около 1/4 объема кости; остальную часть занимает органический матрикс. Вследствие различий в относительной удельной массе органических и неорганических компонентов на долю нерастворимых минералов приходится половина массы кости.
    Неорганический состав костной ткани. Более 100 лет назад было высказано предположение, что кристаллы костной ткани имеют структуру апатита. В дальнейшем это в значительной мере подтвердилось. Действительно, кристаллы кости относятся к гидроксилапатитам, имеют форму пластин или палочек и следующий химический состав – Са10(РО4)6(ОН)2. Кристаллы гидроксилапатита составляют лишь часть минеральной фазы костной ткани, другая часть представлена аморфным фосфатом кальция Са3(РО4)2. Содержание аморфного фосфата кальция подвержено значительным колебаниям в зависимости от возраста. Аморфный фосфат кальция преобладает в раннем возрасте, в зрелой кости преобладающим становится кристаллический гидроксилапатит. Обычно аморфный фосфат кальция рассматривают как лабильный резерв ионов Са2+ и фосфата.

    В организме взрослого человека содержится более 1 кг кальция, который почти целиком находится в костях и зубах, образуя вместе с фосфатом нерастворимый гидроксилапатит.

    Большая часть кальция в костях постоянно обновляется. Ежедневно кости скелета теряют и вновь восстанавливают примерно 700–800 мг кальция.

    В состав минеральной фазы кости входит значительное количество ионов, которые обычно не содержатся в чистом гидроксилапатите, например ионы натрия, магния, калия, хлора и др. Высказано предположение, что в кристаллической решетке гидроксилапатита ионы Са2+ могут замещаться другими двухвалентными катионами, тогда как анионы, отличные от фосфата и гидроксила, либо адсорбируются на поверхности кристаллов, либо растворяются в гидратной оболочке кристаллической решетки.
    Органический матрикс костной ткани. Приблизительно 95% органического матрикса приходится на коллаген. Вместе с минеральными компонентами коллаген является главным фактором, определяющим механические свойства кости.
    Коллагеновые фибриллы костного матрикса образованы коллагеном типа 1. Известно, что данный тип коллагена входит также в состав сухожилий и кожи, однако коллаген костной ткани обладает некоторыми особенностями. Есть данные, что в коллагене костной ткани несколько больше оксипролина, чем в коллагене сухожилий и кожи. Для костного коллагена характерно большое содержание свободных ε-амино-групп лизиновых и оксилизиновых остатков. Еще одна особенность костного коллагена – повышенное по сравнению с коллагеном других тканей содержание фосфата. Большая часть этого фосфата связана с остатками серина.(приложение 1)
    В сухом деминерализованном костном матриксе содержится около 17% неколлагеновых белков, среди которых находятся и белковые компоненты протеогликанов. В целом количество протеогликанов в сформировавшейся плотной кости невелико.

    В состав органического матрикса костной ткани входят гликозамино-гликаны, основным представителем которых является хондроитин-4-суль-фат. Хондроитин-6-сульфат, кератансульфат и гиалуроновая кислота содержатся в небольших количествах.

    Принято считать, что гликозаминогликаны имеют непосредственное отношение к оссификации . Показано, что окостенение сопровождается изменением гликозаминогликанов: сульфатированные соединения уступают место несульфатированным.
    Костный матрикс содержит липиды, которые представляют собой непосредственный компонент костной ткани, а не являются примесью в результате недостаточно полного удаления богатого липидами костного мозга. Липиды принимают участие в процессе минерализации. Есть основания полагать, что липиды могут играть существенную роль в образовании ядер кристаллизации при минерализации кости.
    Биохимические и цитохимические исследования показали, что остеобласты – основные клетки костной ткани – богаты РНК . Высокое содержание РНК в костных клетках отражает их активность и постоянную биосинтетическую функцию.
    Своеобразной особенностью костного матрикса является высокая концентрация цитрата: около 90% его общего количества в организме приходится на долю костной ткани. Принято считать, что цитрат необходим для минерализации костной ткани. Вероятно, цитрат образует комплексные соединения с солями кальция и фосфора, обеспечивая возможность повышения концентрации их в ткани до такого уровня, при котором могут начаться кристаллизация и минерализация.

    Кроме цитрата, в костной ткани обнаружены сукцинат, фумарат, малат, лактат и другие органические кислоты.

    2. Формирование костной ткани
    Образование межклеточного вещества и минерализация костной ткани являются результатом деятельности костеобразующих клеток – остеобластов, которые по мере образования костной ткани замуровываются в межклеточном веществе и становятся остеоцитами. Известно, что костная ткань служит основным депо кальция в организме и активно участвует в кальциевом обмене. Высвобождение кальция достигается путем разрушения (резорбция) костной ткани, а его связывание – путем образования костной ткани. С этим связан процесс постоянной перестройки костной ткани, продолжающийся в течение всей жизни организма. При этом происходят изменения формы кости соответственно изменяющимся механическим нагрузкам. Костная ткань скелета человека практически полностью перестраивается каждые 10 лет.
    Актуальным является изучение механизма оссификации. Процесс минерализации возможен лишь при наличии строго ориентированных колла-геновых волокон. Как было отмечено, непосредственное образование кол-лагенового волокна происходит во внеклеточном пространстве в результате специфического соединения между собой тропоколлагеновых молекул. С помощью рентгеноструктурного анализа и электронной микроскопии показано, что коллагеновое волокно имеет поперечную исчерченность с интервалом 68 нм. Следовательно, период повторяемости структуры (исчерченности) коллагенового волокна в несколько раз меньше, чем длина составляющих волокно молекул тропоколлагена.
    Это доказывает, что ряды молекул тропоколлагена располжены не точно друг над другом. Иными словами, один ряд тропоколлагенов смещен по отношению к соседнему ряду примерно на 1/4 длины молекулы. В результате основу структурной организации коллагенового волокна составляют сдвинутые на четверть ступенчато расположенные параллельные ряды тропоколлагеновых молекул. Структурная особенность коллагенового волокна состоит также и в том, что расположенные в ряду молекулы тропоколлагена не связаны по типу конец в конец. Между концом одной молекулы и началом следующей имеется промежуток. Этот промежуток играет особую роль при формировании кости. Вполне вероятно, что промежутки вдоль ряда молекул тропоколлагена являются первоначальными центрами отложения минеральных составных частей костной ткани.
    Образовавшиеся кристаллы в зоне коллагена затем в свою очередь становятся ядрами минерализации, где в пространстве между коллаге-новыми волокнами откладывается гидроксилапатит.
    Показано, что при формировании кости в зоне кальцификации при участии лизосомных протеиназ происходит деградация протеогликанов. По мере минерализации костной ткани кристаллы гидроксилапатита как бы вытесняют не только протеогликаны, но и воду. Плотная, полностью минерализованная кость практически обезвожена. В этих условиях коллаген составляет примерно 20% от массы и 40% от объема костной ткани, остальное приходится на долю минеральных компонентов.
    Следует отметить, что не все коллагенсодержащие ткани в организме подвержены оссификации. По-видимому, существуют специфические ингибиторы кальцификации. Ряд исследователей считают, что процессу минерализации коллагена в коже, сухожилиях, сосудистых стенках препятствует постоянное наличие в этих тканях протеогликанов. Существует также мнение, что ингибитором кальцификации может быть неорганический пирофосфат. При минерализации тканей ингибирующее действие пиро-фосфата снимается пирофосфатазой, которая, в частности, обнаружена в костной ткани. В целом биохимические механизмы минерализации костной ткани требуют дальнейшего исследования.

    Сложной является и проблема катаболизма матрикса костной ткани. Как в физиологических, так и в патологических условиях происходит резорбция костной ткани, при которой практически одновременно имеет место «рассасывание» как минеральных, так и органических структур костной ткани. В удалении минеральных солей определенная роль принадлежит усиливающейся при остеолизе продукции органических кислот, в том числе лактата. Известно, что сдвиг рН ткани в кислую сторону способствует растворению минералов и тем самым их удалению.

    Резорбция органического матрикса требует наличия и действия соответствующих ферментов. К их числу прежде всего относятся лизосомные кислые гидролазы, спектр которых в костной ткани довольно широк. Роль кислых гидролаз в процессах катаболизма органического матрикса заключается во внутриклеточном переваривании фрагментов резорбируемых структур.
    Следовательно, чтобы мог произойти внутриклеточный гидролиз, необходимо структуры органического матрикса предварительно подвергнуть воздействию, в результате которого образовались бы фрагменты полимеров. Так, резорбция коллагеновых волокон требует предварительного воздействия коллагенолитических ферментов. До недавнего времени считали, что коллагеназа отсутствует в животных тканях. Рядом исследователей доказано присутствие коллагенолитических ферментов в некоторых тканях животных, в частности в костной ткани.

    3.Факторы, влияющие на метаболизм костей (витамины и гормоны)


    Доставка веществ в кость происходит по гаверсовым каналам и лакунам. Рост скелета задерживается в условиях любой недостаточности, в том числе и при недостаточной калорийности пищи. Однако, только при недостатке Са2+, фосфатов и витаминов (А,D, С) наблюдаются характерные поражения костей.

    Аскорбиновая кислота. При её недостатке мезенхимальные клетки не вырабатывают нормальный коллаген, что приводит и к нарушению обызвествлен.(приложение 2)

    Витамин D оказывает на кость многоплановое влияние.

    1) Повышает проницаемость эпителия кишечника для кальция и фосфора, стимулирует всасывание Са2+, повышает реабсорбцию кальция, фосфора, натрия, цитратов, аминокислот в проксимальных канальцах почек, поэтомунедостаток витамина Dпроявляется в снижении поступления Са2+в кровь. Отсюда недостаточное обызвествление кости и развитие рахита при дефиците витаминаD.

    2)Снижает синтез паратгормона, усиливает синтез щелочной фосфатазы (минерализация в эпифизах), коллагена, регулирует образование белковой стромы, рассасывание костной ткани в диафизах – нормализация минерализации;

    3) кальцидиол, кальцитриол снижают пролиферацию, усиливают дифференцировку клеток.

    Напротив, при избытке витамина Dнаблюдается усиленное рассасывание костей и увеличение концентрации Са2+в сыворотке крови. Повышение Са2+и Р в крови приводит к значительному их увеличению в моче и образованию камней в почках.

    При отравлении витамином D активность гидроксилазы в почках ингибируется избытком субстрата, что препятствует синтезу активных форм витамина. Далее начинается рассасывание костной ткани. Усиление резорбции кости сопровождается подавлением процессов ее образования и торможением дифференцировки костных клеток в активные формы. Вследствие деминерализации костей повышается уровень кальция в крови и его выделение с мочой. Параллельно интенсивно всасывается кальций из кишечника → общая гиперкальциемия, повреждение клеточных мембран → нарушение функционирования разных органов. В результате деминерализации костей даже незначительные травмы вызывают множественные переломы.

    Витамин А.

    Биологически активные формы (ретиноевые кислоты)способны регулировать рост и дифференцировку клеток различных тканей организма. Действие ретиноевых кислот направлено и на остеобласты, и на остеокласты. Витамин А снижает продукцию остеобластами коллагена и увеличивает секрецию коллагеназы. Одновременно он стимулирует образование остеокластов и активирует остеокластическую резорбцию.

    При недостатке витамина А нарушается рост скелета (остеосклероз), поскольку витамин участвует в синтезе гепарина, кислых мукополисахаридов хрящевой и костной тканей (связывание Са).

    При избытке витамина А – у детей наблюдается деформация костей. Это объясняется деполимеризацией и гидролизом хондроитинсульфата, входящего в состав хряща. У взрослых – остеопения, переломы и потеря компонентов костного матрикса.

    Паратгормон – гормон паращитовидных желёз. Он повышает концентрацию Са2+в крови благодаря действию на кишечник, кости и почки. Паратгормон ингибирует реабсорбцию Р в почечных канальцах, что приводит к понижению его концентрации в плазме и, как следствие, к дополнительной стимуляции рассасывания костей для пополнения недостаточных количеств этого иона в циркулирующей крови.

    Метаболический эффект паратгормона опосредуется его действием на остеоциты, которые в свою очередь оказывают регуляторное влияние на структуру матрикса кости. Паратгормон активирует связанную с мембраной костных клеток аденилатциклазу и увеличивает поступление Са2+в эти клетки. Увеличение внутриклеточной концентрации Са2+в остеоцитах приводит к следующим основным эффектам:

    1. Активации клеточных систем, участвующих в рассасывании кости;

    2. Ускорению превращения клеток-предшественников в остеобласты и остеокласты;

    3. Ингибированию синтеза коллагена остеобластами.

    При повышении выработки ПТГ снижается Са-связывающая способность кости и может происходить эрозия даже хорошо кальцинированной кости (выход Са, обеднение матрикса кости коллагеном и протеогликаном).

    Кальцитонин - синтезируется в паращитовидных железах и частично в щитовидной железе.

    Его влияние на концентрацию Са2+в крови прямо противоположно действию паратгормона. Он стимулирует перенос Са и Р из крови в кости, ускоряет отложение кальция и ингибирует его выход из костей.Механизм антирезорбтивного действия кальцитонина заключается в прямом действии гормона на остеокласты, имеющие к нему большое количество рецепторов. Рецепторы кальцитонина связаны сG-белками, один тип которых активирует аденилатциклазу, другой – фосфолипазу С. Последующее увеличение концентрации внутриклеточного кальция вызывает открепление остеокластов и прекращение резорбции.

    Первоначальный эффект кальцитонина заключается в активации кальциевого насоса и стимуляции выхода Са из кости, но одновременно гормон стимулирует и поглощение кальция митохондриями. В результате конечный эффект будет в снижении концентрации кальция в крови.

    Половые гормоны имеют важное значение в обмене костной ткани. Основной эффект эстрогена (172-эстрадиола) на кость заключается в снижении скорости её резорбции. Это результат прямого влияния гормона на предшественники остеокластов и подавления остеокластогенеза. Зрелые остеокласты в отличие от предостеокластов не имеют рецепторов к эстрогенам, поэтому их действие опосредовано остеобластами, которые в ответ на половые гормоны снижают секрецию проостеолитических факторов.172-эстрадиол, тестостерон, дигидрокситестостерон и андрогены ограничивают остеопороз, так как ингибируют синтез интерлейкина-6 остеобластами и стромальными клетками костного мозга.

    Глюкокортикоиды – жирорастворимые гормоны, поэтому легко проникают через клеточную мембрану, связываются с рецепторными белками (специфическими в разных тканях) и далее действуют по ядерно-цитоплазматическому механизму. Влияние глюкокортикоидов на метаболизм в разных тканях происходит по-разному, поскольку используются различные варианты воздействия на геном клетки. В костях, соединительной ткани, скелетных мышцах, лимфоидной ткани Гормон-Рецепторный комплекс блокирует образование м-РНК для синтеза белков, и освобождающиеся аминокислоты поступают в печень для глюконеогенеза. Одновременно в этих тканях глюкокортикоиды активируют липолиз, продукты которого тоже используются для глюконеогенеза.Нарушения метаболизма костной ткани возникают вследствие ингибирования процессов синтеза коллагена и неколлагеновых белков кости, а также нарушения регуляторной роли фосфолипидов при минерализации кости.

    Тиреоидные гормоны – одни из основных системных регуляторов развития и перестройки кости. Действие обусловлено их влиянием на остеобласты, которые имеют к ним рецепторы. Показано существование другого механизма действия тиреоидных гормонов на остеобласты:Т3 повышает секрецию гипофизом гормона роста, который,в свою очередь,стимулирует продукциюпеченью и другими органамиинсулиноподобного фактора роста-

    ИФР-1 модулирует функцию остеобластов, в том числе регуляцию ими остеокластогенеза. Последнее связано с увеличением (под влиянием тиреоидных гормонов) секреции остеобластами простагландинов, стимулирующих функции остеокластов.

    Регуляция остеогенеза кости и плотных тканей зуба белками

    В костной ткани, разновидностью которой являются дентин и цемент зуба, содержится до 1 % белков, регулирующих остеогенез. К ним относятся морфогены, митогены, факторы хемотаксиса и хемоаттракции.

    Морфогены – это гликопротеины, выделяющиеся из разрушающейся костной ткани и действующие на полипотентные клетки, вызывая их дифференцировку в нужном направлении.

    Важнейший из них – морфогенетический белок кости, состоящий из четырёх субъединиц с общей молекулярной массой 75,5 кDа. Остеогенез под влиянием этого белка протекает по энхондральному типу, т.е. сначала образуется хрящ, а затем из него кость. Этот протеин получен в чистом виде и применяется при плохой регенерации кости.

    Заключение

    В своем реферате я рассмотрела все возможные вопросы, касающиеся химического состава костной ткани, ее формирования, а также факторы, влияющие на метаболизм костей. Я выяснила, что преобладающим неорганическим веществом в костной ткани является кальций, а органическим – коллаген. На метаболизм костей влияют гормоны и витамины. А формирование костной ткани происходит в результате процесса минерализации.

    Приложение



    Приложение 1



    Приложение 2

    Список литературы:

    1. https://xumuk.ru/biologhim/317.

    2. https://xumuk.ru/biologhim/316.html

    3. https://studfile.net/preview/2766272/page:3/

    4.https://stgmu.ru/userfiles/depts/general_bioorganic_chemistry/knigi/Ershov_%282003%29_Obschaya_himiya



    написать администратору сайта