Главная страница
Навигация по странице:

  • Пермский национальный исследовательский политехнический университет Горно-нефтяной факультетКафедра «Горная электромеханика»Направление

  • Пермь 2021г. Содержание

  • Общие сведения о станках – качалках

  • Станки-качалки

  • Исходные данные

  • Баранов С.Н. УИР 1 семестр. Реферат по учебноисследовательской работе студентов (уирс) студент гр. Мон191бз Баранов Сергей Николаевич


    Скачать 432.52 Kb.
    НазваниеРеферат по учебноисследовательской работе студентов (уирс) студент гр. Мон191бз Баранов Сергей Николаевич
    Дата29.09.2022
    Размер432.52 Kb.
    Формат файлаdocx
    Имя файлаБаранов С.Н. УИР 1 семестр.docx
    ТипРеферат
    #705221
    страница1 из 2
      1   2

    Министерство науки и высшего образования Российской Федерации
    Федеральное государственное автономное образовательное учреждение

    в ысшего образования

    Пермский национальный исследовательский

    политехнический университет
    Горно-нефтяной факультет

    Кафедра «Горная электромеханика»

    Направление: 15.03.02. «Технологические машины и оборудование»
    Реферат

    по учебно-исследовательской работе студентов (УИРС)

    Выполнил: студент гр.МОН-19-1бз

    Баранов Сергей Николаевич

    (Ф.И.О.)

    Проверила:

    Иванченко Анна Анатольевна

    (должность, ф.и.о)

    _____________ ____________

    (оценка) (подпись)

    «___»_________ 2021 г

    Пермь 2021г.
    Содержание

    Введение……………………………………………………………………..…3

    Общие сведения о станках – качалках…………………………………..……4

    Исходные данные…………………………………………………………….12

    Расчётная часть……………………………………………………………….13

    Заключение……………………………………………………………………36

    Список литературы…………………………………………………………..37

    Введение
    Привод станка-качалки является одним из важнейших компонентов штанговой скважинной насосной установки, предназначенной для подъема пластовой жидкости из скважин. Станок - качалка обеспечивает перемещение плунжера насоса посредством колонны насосных штанг. Этот вид насосных установок является наиболее массовым в нефтедобывающей промышленности, и в настоящее время ими оснащено свыше половины всего фонда действующих скважин.

    Общие сведения о станках – качалках

    Станок-качалка являются достаточно консервативным комплексом оборудования, основные конструктивные элементы которого не меняются на протяжении многих десятилетий. Основной областью применения станка - качалки являются скважины с глубиной подвески насоса до 1500 м и дебитами пластовой жидкости до 20 м3 /сутки, что характерно для примерно 80% всего фонда скважин в стране. Незначительное число СК обеспечивает подъем жидкости при глубине подвески до 2750 м или дебите до 60 м3 /сутки.

    В основном на отечественных нефтепромыслах применяются станки - качалки с длиной хода 2,5-3 м и максимальной нагрузкой в точке подвеса 60-80 кН. Нужно отметить, что основные параметры фонда скважин изменяются очень медленно, а поэтому и необходимость в изменении характеристик станков-качалок отсутствует. В тоже время разнообразие условий эксплуатации, например, пробная эксплуатация скважин, требует новых типов приводов, которых обеспечивают расширение возможностей данных устройств.

    ШСНУ включает:

    а) наземное оборудование - станок-качалка (СК), оборудование устья, блок управления;

    б) подземное оборудование - насосно-компрессорные трубы (НКТ), штанги насосные (ШН), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.



    Рис.1 Схема штанговой насосной установки

    Штанговая глубинная насосная установка (рис. 1) состоит из скважинного насоса 2 вставного или невставного типов, насосных штанг 4 , насосно-компрессорных труб 3 , подвешенных на планшайбе или в трубной подвеске 8 устьевой арматуры, сальникового уплотнения 6 , сальникового штока 7 , станка качалки 9 , фундамента 10 и тройника 5 .

    На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра.

    Станки-качалки
    Станок-качалка является индивидуальным приводом скважинного насоса.



    Рис.2 Станок – качалка

    1 – подвеска устьевого штока;2 – балансир;3 – стойка;4 – шатун;5 – кривошип;6 – редуктор;7 – ведомый шкив; 8 – ремень; 9 – электродвигатель;10 – ведущий шкив; 11 – ограждение; 12 – поворотная плита; 13 – рама; 14 – противовес; 15 – траверса; 16 – тормоз; 17 ‑ канатная подвеска
    Основные узлы станка-качалки (Рис.2) – рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирно-подвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т. е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной салазке.

    Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска. Она позволяет регулировать посадку плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

    Амплитуду движения головки балансира (длина хода устьевого штока-7 на рис. 2) регулируют путем изменения места сочленения кривошипа шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие). За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

    Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т. д.), а также самозапуск СК после перерыва в подаче электроэнергии.

    СК в силу заложенного в них принципа действия и необходимости уравновешивания обладают высокой металлоемкостью — в среднем 15-25 т - и поэтому требуют сооружения массивного железобетонного фундамента или стального основания. В большинстве случаев СК монтируются рядом с устьем скважины и не меняются в течение всего периода их эксплуатации. Область применения станков-качалок ограничена условно прямолинейными и мало искривленными скважинами. Наличие значительных неуравновешенных масс не позволяет использовать их на морских промыслах, а на заболоченных территориях требуется сооружение дорогостоящих фундаментов, стоимость которых может превышать стоимость самих СК.

    Современные СК состоят из рамы, стойки, преобразующего механизма (балансир, траверс, шатуны, кривошипы), редуктора, клиноременной передачи и приводного двигателя. Фактический срок службы этого оборудования, исходя из мирового опыта, составляет более 20-30 лет. Его ремонт или замена являются чрезвычайно трудоемкими и дорогостоящими операциями, что обусловлено, в частности, значительной массой и габаритами оборудования.

    Совершенствование станков-качалок идет в направлении разработки новых типоразмеров с аналогичными или близкими параметрами взамен имеющихся, а также проектирования устройств, основанных на иных принципах действия. К примерам последних следует отнести станки-качалки с гидроприводом, бесбалансирные станки-качалки ленточного типа, цепные и др. Однако если по техническим параметрам эти устройства существенно превосходят традиционные станки-качалки, то по надежности до настоящего времени их превзойти не удалось.[4]

    Основными конкурентами в области применения штанговых скважинных насосных установок с приводом от СК в настоящее время являются гидропоршневые, электровинтовые, диафрагменные, струйные и штанговые винтовые насосные установки. Первые четыре типа установок стоят существенно дороже, а последний является основным конкурентом для эксплуатации прямолинейных и малоискривленных скважин. Винтовые штанговые насосные установки характеризуются более низкой ценой наземной части, не требуют сооружения фундамента и достаточно надежны.

    СК характеризуются тремя основными параметрами: длиной хода точки подвеса штанг, максимальной нагрузкой в точке подвеса штанг и крутящим моментом на выходном валу редуктора.

    Новый отечественный стандарт, гармонизированный со стандартом API, предусматривает ряд значений длины хода – от 0,41 до 7,62. Исследования зависимостей массы и габаритов балансирных станков-качалок показывают, что подобная схема привода может быть реализована только для длины хода, не превышающей 6,1 м. При дальнейшем увеличении длины требуется масса привода свыше 60 т, что делает нереальным его изготовление, монтаж и обслуживание в условиях массовой эксплуатации. Поэтому длина хода точки подвеса штанг свыше указанной величины не должны регламентироваться вообще.

    Максимальная нагрузка в точке подвеса штанг является вторым основным параметром привода. Ее значения в процессе эксплуатации обусловлены большим количеством факторов — это условный диаметр применяемого скважинного насоса, глубина его подвески, физические характеристики пластовой жидкости и др. Поэтому выбор значений максимальной нагрузки, как правило, сводится к выбору ряда круглых чисел, составляющих арифметическую прогрессию. За всю историю отечественного нефте-промыслового машиностроения в серийном производстве были освоены станки-качалки с грузоподъемностью до 80 кН включительно. Опыт эксплуатации этого оборудования на отечественных промыслах показывает, что потребность в приводах с максимальным усилием менее 40 кН практически отсутствует.

    Третьим основным параметром является величина крутящего момента на выходном валу редуктора. Этот параметр - комплексный и при одном и том же числе двойных ходов характеризует производительность станка-качалки, поскольку зависит и от длины хода, и от полезной нагрузки в точке подвеса штанг. Редукторы, реализующие стандартные значения крутящего момента, обеспечивают создание до 5 типоразмеров приводов, которые отличаются длиной хода и усилием в точке подвеса штанг.

    Ремонт СК выполняется собственными силами предприятий. При этом приходится обычно заменять только редуктор, срок службы которого в настоящее время недопустимо низок. Ситуация отслеживается машиностроителями – часть из них прекратили выпуск СК, а некоторые ограничиваются изготовлением редукторов. Это ведет к истощению техноло-гической базы, разрушению отлаженного производства и застою в развитии нового оборудования.

    К основным недостаткам балансирных СК следует отнести:

    - низкий срок службы редуктора (в среднем 5 лет); 

    -разрушение элементов преобразующего механизма; 

    - неудовлетворительное центрирование канатной подвески, обусловленное неточностью изготовления головки балансира и приводящее к ускоренному износу устьевого уплотнения;

    - неудобство перестановки пальцев шатунов; 

    - высокая трудоемкость перемещения грузов при уравновешивании; 

    - неудобство обслуживания клиноременной передачи; 

    - неудобство поворота головки балансира перед выполнением подземного ремонта скважин.

    Говоря о перспективах развития штангового способа эксплуатации скважин и соответственно о перспективах совершенствования приводов штанговых скважинных насосов необходимо иметь в виду, что вновь вводимые в эксплуатацию месторождения по своим масштабам не сравнимы с ранее освоенными - они располагаются в основном в труднодоступных, заболоченных районах с вечно мерзлыми грунтами. Бурение скважин на таких территориях ведется, как правило, с кустов наклонно-направленными скважинами, эксплуатация которых штанговыми насосами затруднительна. А к перспективным относятся районы шельфа и морские месторождения, на которых применение механических СК нереально.

    Поэтому необходимости в каком-нибудь существенном совершенствовании конструкции СК сегодня нет. Основное направление их развития должно заключаться в увеличении надежности, облегчении обслуживания и снижении металлоемкости в рамках существующих отработанных схем. Последнее подразумевает, например, применение одноплечных СК с пневматическим уравновешиванием, которые по сравнению с двуплечными, аналогичными по параметрам, имеют меньшие габариты и массу.

    Ситуация с балансирными СК отнюдь не означает прекращения работ по созданию приводов, основанных на иных принципах действия. Развитию этих работ благоприятствует упомянутый выше новый стандарт на приводы штанговых насосов, который не регламентирует устройство и кинематическую схему приводов, а только их выходные параметры.

    При этом можно выделить новые приводы с использованием цепной передачи, выпуск которых налажен в Татарии, гидравлические приводы с пневматическим уравновешиванием, выпускаемые ОАО "Мотовилихинские заводы" (Пермь) и гидравлический привод с инерционным уравновешиванием, разработанный в РГУ нефти и газа им. И. М.Губкина.

    Основой для создания гидроприводных установок послужили выпускавшиеся серийно гидравлические приводы с использованием насосно-компрессорных труб в качестве уравновешивающего груза «АГН». Выпускаются они пока опытно-промышленными партиями, но факт ведения этих работ свидетельствует о возможности массового появления приводов штангового насоса нетрадиционных конструкций.[5]
    Исходные данные

    Диаметр эксплуатационной колонны, мм

    168

    Глубина скважины L 0 , м

    1550

    Диаметр эксплуатационной колонны(внутренний), мм

    150

    Планируемый дебит жидкости  , Q, м3 /сут

    30

    Объёмная обводнённость жидкости, %

    0

    Плотность дегазированной нефти,  н , кг/м3

    840

    Плотность пластовой воды  в , кг/м3

    1100

    Плотность газа (при стандартных условиях)  г 0 , кг/м3

    1,3

    Газовый фактор G 0 , м3 /м3

    40

    Вязкость нефти  н , м2 /с

    3 10-6

    Вязкость воды  в , м2 /с

    10-6

    Давление насыщения нефти газомр нас , МПа

    9,2

    Пластовое давление р пл , МПа

    12

    Устьевое давление р у , атм

    1,6

    Средняя температура в стволе скважины, К

    305

    Коэффициент продуктивности К пр , м3 /(с Па)

    1,03 10-3

    Объёмный коэффициент нефти при давлении насыщения, bнас

    1,15
      1   2


    написать администратору сайта