Сейсморазведка Хмелевской 1 половина. Сейсморазведка 10. Физикогеологические основы сейсморазведки
Скачать 1.1 Mb.
|
1,5 км/с), глины (1,3 - 3 км/с), уголь (1,8 - 3,5 км/с). Большие скорости (3 - 6 км/с) у скальных осадочных пород (известняки, мрамор, доломит, соль и др.). Самые большие (4 - 7 км/с) - у изверженных и метаморфических пород.В теории сейсморазведки показано, что при падении Р-волны на границу по нормали ( ) не образуются -волны, а вся энергия переходит в отраженную и преломленную -волны. Поэтому в сейсморазведке чаще используются волны , распространяющиеся по лучам, близким к нормальным. 10.1.4. Типы сейсмических волн. От пункта возбуждения во все стороны распространяются упругие волны. Вдоль земной поверхности идут поверхностные волны, а в глубь слоя распространяются прямые или падающие (продольная и поперечная) волны. На границах раздела сред с разными скоростями упругих волн за счет энергии падающей волны возникают отраженные и преломленные волны. При этом могут образоваться отраженные и преломленные волны как того же типа, что и падающая (монотипные, однотипные волны), так и другого типа (обменные волны). Поскольку продольные волны обладают большими скоростями, чем поперечные (и поэтому к пунктам регистрации приходят первыми), а при возбуждении упругих волн взрывами и многими невзрывными источниками возникают в основном продольные волны, то в сейсморазведке они используются чаще. В дальнейшем речь будет идти в основном о продольных волнах, хотя все рассмотренные закономерности могут быть справедливы и для поперечных волн. Отражение монотипных продольных сейсмических волн происходит на границах слоев с разными волновыми сопротивлениями (акустическими жесткостями \sigmaV), т.е. условие образования отраженной волны определяется неравенством , где - скорости распространения волн и плотности пород в первом и втором слоях, а угол падения равен углу отражения (рис. 4.1). Из преломленных волн для сейсморазведки особый интерес представляют волны, падающие под углом , называемым критическим или углом полного внутреннего отражения, когда угол преломления становится равным 90 . В этом случае вдоль границы раздела пойдет скользящая преломленная волна. Именно она, согласно принципу Гюйгенса, создает новые волны, называемые головными, которые изучаются в сейсмическом методе преломленных волн. Природа головных волн рассмотрена в (10.3). При и формула для определения критического угла падения получит вид . Так как , то условием образования скользящей, а значит, и головной преломленной волны является . Если скорость распространения упругой волны в среде возрастает с глубиной, то лучи проходящих волн искривляются и возвращаются на поверхность. Такие волны называются рефрагированными. На рис. 4.1, б показана рефрагированная волна, образующаяся в слоистой толще, перекрытой однородным слоем. Подобную форму лучей рефрагированных волн можно объяснить следующим образом (рис. 4.1, в). Если среду с непрерывно возрастающей с глубиной скоростью разбить на отдельные прослои с , то на границах между ними должны образоваться преломленные волны. Углы преломления в данном разрезе согласно закону отражения - преломления будут возрастать по мере углубления ( ) до тех пор, пока в точке максимального проникновения или поворота луча. Далее волна выйдет на поверхность наблюдений. Рассмотренными особенностями объясняется тот факт, что волны, входящие в подобную среду под меньшим углом падения, проникают глубже. При распространении сейсмических волн в средах сложного строения (дайки, уступы, сбросы и т.п.) в зоне тени для проходящих волн могут возникать дифрагированные волны. На границе воздух - земная поверхность образуются поверхностные волны Рэлея и Лява, которые быстро затухают с глубиной. Кроме перечисленных полезных для глубинных исследований волн на записях наблюдаются различные волны-помехи (полно- и неполнократные отраженно-преломленные, звуковые, микросейсмы и т.п.). Каждая из рассмотренных полезных волн может быть зарегистрирована самостоятельно, и поэтому их называют индивидуальными, однократными. Однако очень часто наблюдается их сложение. Обилие сейсмических волн (сотни), необходимость выделения и распознавания природы одной или десятка полезных волн среди сотен других, играющих роль волн-помех, представляют очень сложную техническую, методическую и интерпретационную проблему в сейсморазведке. 10.1.5. Сейсмические среды и границы. Реальные геологические среды очень сложны с точки зрения скоростного разреза и особенностей распространения в них монотипных упругих волн. Упрощенными физико-геологическими моделями (ФГМ) сейсмических сред являются следующие. В однородной изотропной среде скорость распространения упругой волны в каждой точке неизменна по величине и направлению. В однородной анизотропной среде скорость распространения упругих волн по разным направлениям различна. В однороднослоистых средах скорость остается постоянной лишь в каждом слое и скачком меняется на их границах. В градиентных средах скорость распространения волн является непрерывной функцией координат. Чаще всего наблюдается увеличение скорости с глубиной (среды с вертикальным градиентом скорости). В двуxмернонеоднородных средах скорость меняется и в вертикальном, и в горизонтальном направлениях, а в трехмерных - по трем направлениям. Таким образом, в сейсморазведке чаще всего используются модели слоистых сред, состоящих из слоев, в каждом из которых скорость или постоянна, или меняется непрерывно, а на границах слоев - меняется скачком. Для образования тех или иных волн большую роль играют форма и качество сейсмических границ между слоями. На резких границах скорости и акустические жесткости меняются более, чем на 25 %, на нерезких отличия меньше. С геометрической точки зрения сейсмические границы бывают гладкими, на которых неровности по размерам значительно меньше длины упругой волны, и шероховатыми - с неровностями, сравнимыми с длиной волны. 10.2. Упругие и пьезоэлектрические свойства горных пород и сред Основными упругими параметрами горных пород принято считать скорости продольных ( ) и поперечных ( ) волн и их поглощения ( ), которые определяются упругими модулями ( ) и плотностью ( ) (см. 4.1, 4.2). 10.2.1. Скорости распространения упругих волн в различных горных породах. Скорости распространения упругих волн являются определенным диагностическим признаком горной породы. Методы их определения делятся на лабораторные (измерения на образцах), скважинные (сейсмические и акустические наблюдения в скважинах), полевые (расчет скорости в результате интерпретации данных сейсморазведки). Скорости распространения волн определяются составом, строением и состоянием горных пород, которые, в свою очередь, зависят от гранулометрического и минерального состава твердых частиц, глубины залегания, возраста пород, степени метаморфизма, плотности, пористости, трещиноватости, разрушенности, выветренности, водонасыщенности, нефтегазонасыщенности и других факторов. Наименьшими скоростями ( ) обладают рыхлые сухие пески (0,5 - 1 км/с), нефть ( Все остальные факторы, которые делают породу более массивной, сцементированной, консолидированной - например, водонасыщенность, замерзание, степень метаморфизма - делают больше. С увеличением раздробленности, трещиноватости, рыхлости, пористости ( при заполнении пор воздухом или газом) уменьшается. Нефтенасыщенные породы по мало отличаются от водонасыщенных. Для сильно рассланцованных пород характерно различие скоростей в разных направлениях (анизотропия): у них скорость на 10 - 20 % больше вдоль, чем вкрест напластования. Чем больше абсолютный возраст пород ( ) и глубина залегания ( ), тем больше скорость. Для осадочных пород известна следующая эмпирическая формула зависимости скорости от этих факторов , где - коэффициент пропорциональности. Т а б л и ц а 4.1
В таблице 4.1 приведены примеры величин скоростей продольных волн в некоторых породах и средах, которые свидетельствуют о большом интервале их изменения для каждой породы и возможности одинаковой скорости у разных пород. Скорости распространения поперечных волн ( ) меньше, чем продольных ( ). Отношение меняется для разных пород: от 1,3 - 1,6 (для высокопористых газонасыщенных), к 1,5 - 2 (для сцементированных скальных или водонефтенасыщенных) до 2 - 3 (для рыхлых плохо сцементированных типа л\"ессов, песков, глин). Этим отношением определяется коэффициент Пуассона ( ). 10.2.2. Поглощение упругих волн в горных породах. Кроме скоростей распространения упругих волн, которыми определяется кинематика волн, важным сейсмическим свойством горных пород является степень поглощения ими сейсмической энергии, что определяет динамические характеристики волн, и прежде всего их интенсивность и дальность распространения. Поглощение вызывается потерями упругой энергии за счет необратимых процессов в среде вследствие ее неидеальной упругости. По этой причине амплитуда, например, плоской гармонической волны экспоненциально убывает с расстоянием х, т.е. , где - амплитудный параметр; - коэффициент поглощения. Коэффициент поглощения, разный для разных пород, возрастает с ростом пористости, трещиноватости пород, с уменьшением глубины их залегания и водонасыщенности. В среднем у изверженных, метаморфических и сцементированных осадочных пород = 10-5 - 10-3 (1/м), у рыхлых осадочных = 10-3 - 0,5 (1/м). 10.2.3. Типы скоростей в слоистых средах. В связи с разным строением слоистых сейсмических сред и границ в сейсморазведке используются следующие скорости (или типы скоростей) распространения упругих волн ( и ). Истинная скорость - это скорость волны в малом объеме породы. Она определяется путем ультразвуковых измерений на образцах. Пластовая скорость - это средняя скорость распространения упругих волн в каждом пласте изучаемого геологического разреза. Интервальная скорость является частным случаем средней скорости для заданного интервала глубин. Средняя скорость в пачке пластов - это скорость, определяемая по формуле
где - мощности отдельных пластов данной слоистой среды; - времена пробега в каждом пласте, измеренные вдоль луча, перпендикулярного слоистости. Пластовая, средняя и интервальная скорости определяются по сейсмическим наблюдениям в скважинах. Эффективная скорость - это некоторая средняя скорость, определяемая в результате интерпретации данных сейсморазведки методом отраженных волн в предположении, что скорость в толще, покрывающей отраженную границу, постоянна. Граничная скорость - это скорость распространения скользящей преломленной волны вдоль преломляющей границы. Она рассчитывается при интерпретации данных сейсморазведки методом преломленных волн. Кажущаяся скорость - это скорость распространения фронта любой волны вдоль профиля наблюдений. В любой точке профиля наблюдений она равна отношению приращения пути ко времени его прохождения волной , т.е. . 10.2.4. Сейсмоэлектрические свойства горных пород. На изменении сейсмоэлектрических свойств горных пород основан сейсмоэлектрический метод, находящийся на стыке сейсморазведки и электроразведки. К сейсмоэлектрическим свойствам относят различные пьезоэлектрические модули. В минералах с асимметричным строением кристаллов (кварц, турмалин, сфалерит, нефелин и др.) под действием упругой деформации ( ) на гранях возникают электрические заряды ( ). Они связаны соотношением , где - пьезоэлектрические модули. Пьезоэлектрические модули в зависимости от вида, направления деформации и направления поляризации для каждого минерала-пьезоэлектрика меняются во много раз. Действующая сила может иметь 9 составляющих , где , т.е. существует 9 компонент тензора механических напряжений, или деформаций. Объясняется это тем, что на каждую из трех граней кристалла, совпадающих с координатными плоскостями, может действовать сила, имеющая три составляющие, направленные вдоль осей координат. В связи с этим пьезоэлектрический модуль кристалла может определяться как этими девятью механическими тензорами, так и тремя составляющими вектора поляризации, совпадающими с осями координат. Таким образом, каждый кристалл может описываться 27 пьезоэлектрическими модулями ( , где ). Кроме модуля d, имеются другие пьезоэлектрические модули, связанные с d через модуль Юнга, диэлектрическую проницаемость и иные константы. Максимальные пьезоэлектрические модули, измеряемые в кулонах на ньютон (кл/н), равны: у кварца от 0,6*10 -3 до 2*10-3, у турмалина от 0,3*10 -3 до 3*10-3, у нефелина от 0,5*10 -3 до 2*10-3. У большинства минералов не превышает 10-5 кл/н. Пьезоэлектрические модули горных пород характеризуются не только наличием и процентным содержанием в породе минералов-пьезоэлектриков, но и их определенной упорядоченностью. Если кристаллы в породе ориентированы по направлению одного из элементов симметрии, то порода отличается повышенными значениями d и может быть отнесена к так называемым пьезоэлектрическим текстурам. Кварцсодержащие породы, особенно если в них имеется горный хрусталь, отличаются наибольшими пьезоэлектрическими модулями, хотя они в десятки и сотни раз меньше, чем модули монокристалла кварца. По мере убывания от 10-3 до 10-6 кл/н эти породы можно расположить в следующим порядке: жильный кварц, кварцевые ядра пегматитовых жил, кварциты, граниты, гнейсы, песчаники. Объясняется это тем, что в изверженных породах в процессе их образования минералы более закономерно ориентируются относительно кристаллографических осей, в то время как в осадочных породах зерна кварца занимают беспорядочное положение. Нефелинсодержащие породы обладают значениями от 10-6 до 10-4 кл/н. В породах, содержащих другие минералы-пьезоэлектрики, меньше 10-5 кл/н. Пьезоэлектрические модули горных пород с пьезоэлектрическими минералами определяются не только содержанием этих минералов и их пространственным положением, но и генезисом пород, их диэлектрической проницаемостью и упругими свойствами. Сейсмоэлектрический эффект обусловлен электрокинетическими процессами влагосодержащих пород. Он определяется их минеральным составом, структурой и текстурой, а в основном пористостью, влажностью, составом и концентрацией растворенных в воде солей. С увеличением пористости и связанной влаги растет, а с увеличением свободной влаги либо мало меняется, либо уменьшается. Кроме перечисленных геолого-гидрогеологических факторов они зависят от электрических и упругих свойств этих пород. В целом пьезоэлектрические модули влагосодержащих пород меняются от 10-6 до 10-4 кл/н. 10.3. Принципы решения прямых и обратных задач сейсморазведки 10.3.1. Принципы решения прямых задач сейсморазведки. Прямой задачей сейсморазведки называется расчет времен прихода ( ) и амплитуд ( ) для той или иной волны для известного сейсмогеологического разреза, т.е. когда известны: мощности, глубины залегания, размеры тех или иных геологических объектов (чаще слоев) и скорости распределения упругих волн, а также место и форма источника. Строгое решение прямых динамических задач сейсмики неоднородных сред производится путем решения волнового уравнения вида:
|