Проверка выдвинутого положения на соответствие установившимся в науке законам, принципам, теориям и т.п. Утверждение должно находиться также в согласии с фактами, на базе которых и для объяснения которых оно предложено. Требование такой проверки не означает, конечно, что новое утверждение должно полностью согласовываться с тем, что считается в данный момент законом и фактом. Может случиться, что оно заставит иначе посмотреть на то, что принималось раньше, уточнить или даже отбросить что-то из старого знания.
Анализ утверждения с точки зрения возможности эмпирического подтверждения или опровержения. Если такой возможности в принципе нет, не может быть и оснований для принятия утверждения: научные положения должны допускать принципиальную возможность опровержения и предполагать определенные процедуры своего подтверждения.
Исследование выдвинутого положения на приложимость его ко всему классу объектов, о которых идет речь, а также к родственным им явлениям.
Анализ логических связей утверждения с ранее принятыми общими принципами: если утверждение логически следует из установленных положений, оно обоснованно и приемлемо в той же мере, что и эти положения.
Если утверждение касается отдельного объекта или ограниченного круга объектов, оно может быть обосновано с помощью непосредственного наблюдения каждого объекта. Научные положения касаются обычно неограниченных совокупностей вещей, поэтому сфера применения прямого наблюдения в этом случае является узкой.
Выведение следствий из выдвинутого положения и эмпирическая проверка их. Это универсальный способ обоснования теоретических утверждений, но способ, никогда не дающий полной уверенности в истинности рассматриваемого положения. Подтверждение следствий повышает вероятность утверждения, но не делает его достоверным.
Внутренняя перестройка теории, элементом которой является обосновываемое положение. Может оказаться, что введение в теорию новых определений и соглашений, уточнение ее основных принципов и области их действия, изменение иерархии таких принципов и т.д. приведет к включению анализируемого положения в ядро теории. В этом случае оно опирается не только на подтверждение своих следствий, но и на те явления, которые объясняет теория, на связи ее с другими научными теориями и т.д. Ни одно утверждение не обосновывается изолированно, само по себе обоснование всегда носит системный характер. Включение утверждения в теоретическую систему, придающую устойчивость своим элементам, является одним из наиболее важных шагов в его обосновании.
Совершенствование теории, укрепление ее эмпирической базы и прояснение ее общих, философских предпосылок одновременно является вкладом в обоснование входящих в нее утверждений. Среди способов прояснения теории особую роль играют выявление логических связей входящих в нее утверждений, минимизация исходных допущений, аксиоматизация и, если это возможно, ее формализация.
ДОСТОВЕРНОСТЬ – обоснованность, доказательность, бесспорность знания. Достоверное суждение – такое суждение, в котором высказывается твердо обоснованное знание, напр.: «Луна – спутник Земли», «Вода кипит при 100°С» и т.п. Достоверные суждения разделяются на два вида: ассерторические, констатирующие реальное положение дел, и аподиктические, утверждающие необходимую связь явлений. Д. суждений обеспечивается эмпирическим подтверждением, экспериментальными данными, общественной практикой. ЗАБЛУЖДЕНИЕ – гносеологическая оценка знания, выражающая его ограниченный характер. Марксистская гносеология и методология научного познания используют четыре истинностные оценки знания: истина – ложь, относительная истина – абсолютная истина. Первая пара понятий используется при анализе структуры научного знания в некоторый период его развития при проверке, подтверждении и опровержении законов и теорий, при установлении их соответствия действительности. При таком подходе все научные утверждения и теории разделяются на два класса – истинные и ложные, соответствующие действительности и не соответствующие ей. Когда мы переходим к рассмотрению развития знания, пара понятий «истина – ложь» уже не может служить для истинностной оценки. В самом деле, как квалифицировать экономическую теорию Д. Рикардо или астрономическую теорию Н. Коперника? Их нельзя назвать истиной, ибо во многих своих частях они ошибочны, но эти теории трудно квалифицировать как просто ложные, ибо они были большим шагом вперед в развитии науки и внесли в нее много новых идей, получивших признание и подтверждение. Такие теории называются относительно истинными, т.е. неполными, неточными, исторически ограниченными истинами, на смену которым приходят более точные истины.
Иногда под 3. понимают ложь, которая ошибочно принимается за истину. Такое понимание не вполне удовлетворительно, ибо приводит к абсурдному выводу, что вся история познания представляет собой доходящую почти до наших дней цепь ошибок.
Категория 3. используется при диалектическом рассмотрении познания, когда она добавляется к понятиям относительной и абсолютной истины. Всякая истина объективно становится 3. после того, как обнаружился ее относительный характер. Геоцентрическая система вовсе не была 3. во времена Птолемея и в течение почти полутора тысяч лет после ее создания. Она соответствовала общим мировоззренческим представлениям эпохи, уровню развития общественной практики и подтверждалась наблюдениями с использованием существовавших инструментов. Она была истиной. Как истина она играла прогрессивную роль и в практике, и в развитии астрономического знания. Только после того как выяснилась ее ограниченность, т.е. после победы гелиоцентрической системы, система Птолемея объективно превратилась в 3.
Момент, когда относительная истина превращается в 3., трудно зафиксировать. В течение пятидесяти лет после появления труда Коперника не было объективных оснований квалифицировать концепцию Птолемея как 3. Лишь постепенно, после изобретения телескопа, появления ранее неизвестных данных, результатов Галилея и Кеплера, система Птолемея стала рассматриваться как 3.
3. не может играть прогрессивной роли в познании. Защищать 3. – значит выступать против истины. Конечно, всегда находились люди, которые в силу субъективной слепоты или социального интереса пытались ставить 3. на место истины. И всегда такие попытки лишь тормозили прогресс, но не могли остановить его. ЗАКОН АССОЦИАТИВНОСТИ (от лат. associatio – соединение) – общее имя для ряда логических законов, позволяющих по-разному группировать высказывания, соединяемые с помощью конъюнкции («и»), дизъюнкции («или») и др.
Операции сложения и умножения чисел в математике ассоциативны:
(а + b)+с=а + (b + с), (а·b)·с=а·(b·с).
Ассоциативностью обладают также логическое сложение (дизъюнкция) и логическое умножение (конъюнкция). ЗАКОН ГИПОТЕТИЧЕСКОГО СИЛЛОГИЗМА – закон логики, характеризующий импликацию («если, то»): если первое влечет второе, то если второе влечет третье, то первое влечет третье. Напр.: «Если с ростом знаний о человеке возрастает возможность защитить его от болезней, то если с ростом этой возможности растет средняя продолжительность человеческой жизни, то с ростом знаний о человеке растет средняя продолжительность его жизни». Иначе говоря, если условием истинности первого является истинность второго, то если условием истинности второго является истинность третьего, то истинность последнего есть также условие истинности первого.
С использованием символики логической (р, q, r – некоторые высказывания; – импликация, «если, то») данный закон представляется так:
(р q) -> ((q r) -> (р r)),
если (если р, то q), то (если (если q, то r), то (если р, то r)).
3. г. с. близок по своей структуре транзитивности закону, называемому также конъюнктивно-гипотетическим силлогизмом: если дело обстоит так, что если первое, то второе, и если второе, то третье, то если первое, то третье.
Эти законы называются гипотетическими (условными) силлогизмами по сходству их с традиционными логическими схемами, известными еще с античности и именуемыми силлогизмами. Схемы подобных умозаключений ведут от двух посылок определенного вида к выводу, также имеющему некоторый определенный (хотя, может быть, и иной) вид. ЗАКОН ДВОЙНОГО ОТРИЦАНИЯ – закон логики, позволяющий отбрасывать двойное отрицание. Его можно сформулировать так: отрицание отрицания дает утверждение, или: повторенное дважды отрицание ведет к утверждению. Напр.: «Если неверно, что Вселенная не является бесконечной, то она бесконечна».
3. д. о. был известен еще в античности. В частности, древнегреческие философы Зенон Элейский и Горгий излагали его так: если из отрицания к.-л. высказывания следует противоречие, то имеет место двойное отрицание исходного высказывания, т.е. оно само.
С применением символики логической (р – некоторое высказывание; – условная связь, «если, то»; – отрицание, «неверно, что») закон записывается так:
p p, если неверно, что неверно р, то верно р.
Другой закон логики, говорящий о возможности не снимать, а вводить два отрицания, принято называть обратным 3. д. о.: утверждение влечет свое двойное отрицание. Напр.: «Если Шекспир писал сонеты, то неверно, что он не писал сонеты». Символически:
p p,
если р, то неверно, что не-р.
Объединение этих законов дает т. наз. полный 3. д. о.: двойное отрицание равносильно утверждению. Напр.: «Планеты не неподвижны в том и только том случае, если они движутся». Символически (=– эквивалентность, «если и только если»):
Р = Р, неверно, что не-р, если и только если верно р. ЗАКОН ДЕ МОРГАНА – общее название логических законов, связывающих с помощью отрицания конъюнкцию («и») и дизъюнкцию («или»). Названы именем англ. логика XIX в. А. де Моргана.
Один из этих законов можно выразить так: отрицание конъюнкции эквивалентно дизъюнкции отрицаний. Напр.: «Неверно, что завтра будет холодно и завтра будет дождливо, тогда и только тогда, когда завтра не будет холодно или завтра не будет дождливо».
Другой закон: отрицание дизъюнкции эквивалентно конъюнкции отрицаний. Напр.: «Неверно, что ученик знает арифметику или знает геометрию, тогда и только тогда, когда он не знает ни арифметики, ни геометрии».
В терминах символики логической (р, q – некоторые высказывания; & – конъюнкция; v – дизъюнкция; – отрицание, «неверно, что»; = – эквивалентность, «если и только если») данные два закона представляются формулами:
(p & q) = ( p vq), неверно, что р и q, если и только если неверно р и неверно q;
(p v q) = ( p & q), неверно, что или р, или q, если и только если неверно р и неверно q.
На основе этих законов, используя отрицание, связку «и» можно определить через «или», и наоборот: «р и q» означает «Неверно, что не-р или не-q», «р или q» означает «Неверно, что не-р и не-q».
Напр., «Идет дождь и идет снег» означает «Неверно, что нет дождя или нет снега»; «Сегодня холодно или сыро» означает «Неверно, что сегодня не холодно и не сыро». ЗАКОН ДИСТРИБУТИВНОСТИ (от англ. distribution – распределение, размещение) – общее название группы логических законов сходной структуры. Эти законы позволяют распределить одну логическую связь относительно другой.
Полный 3. д. конъюнкции относительно дизъюнкции с использованием символики логической формулируется так (р, q, r – некоторые высказывания; & – конъюнкция, «и»; v – дизъюнкция, «или»; = – эквивалентность, «если и только если»):
p&(qvr) = (p&q)v(p&r),
первое и (второе или третье), если и только если (первое и второе) или (первое и третье). Напр.: «Сегодня идет дождь и завтра ясно или послезавтра ясно в том и только в том случае, когда сегодня идет дождь и завтра ясно или сегодня идет дождь и послезавтра ясно».
Полный 3. д. дизъюнкции относительно конъюнкции:
pv(q&r) = (pvq)&(pvr),
первое или (второе и третье), если и только если (первое или второе) и (первое или третье). Напр.: «Завтра будет солнечно или послезавтра будет мороз и снег тогда и только тогда, когда завтра будет солнечно или послезавтра будет мороз и завтра будет солнечно или послезавтра будет снег».
Закон самодистрибутивности импликации (->, «если, то») дает возможность распределять импликацию по импликации:
(p->(q->r))->((p->q)->(p->r)),
если (если первое, то (если второе, то третье)), то (если (если первое, то второе), то (если первое, то третье)). Этот закон верен для импликации материальной, но не имеет места для целого ряда иных импликаций, вводимых в современной логике. ЗАКОН ДУНСА СКОТА – закон логики классической, характеризующий логическое противоречие и импликацию материальную. Закон можно передать так: ложное высказывание влечет (имплицирует) любое высказывание. Напр.: «Если дважды два не равно четырем, то, если дважды два четыре, вся математика ничего не значит».
Первое упоминание закона принадлежит средневековому философу и логику Дунсу Скоту, прозванному «тонким доктором» схоластики. Амер. философ и логик К. И. Льюис (1883-1964), положивший начало исследованию модальной логики, отнес данный закон к парадоксальным положениям классической логики. В предложенной самим К. И. Льюисом новой теории логического следования – т. наз. теории строгой импликации – 3. Д. С. недоказуем. Но в этой теории есть собственный аналогичный парадокс, говорящий уже о логической невозможности: логически невозможное высказывание влечет любое высказывание. Напр.: «Если снег бел и вместе с тем не бел, трава бывает только черной».
С использованием символики логической (р, q – некоторые высказывания; – отрицание, «неверно, что»; —> импликация, «если, то») 3. Д. С. выражается формулой:
p->(p->q),
если неверно, что p, то если р, то q; или эквивалентной ей в классической логике формулой:
(p&p)->q, если р и не-р, то q.
Если принимаются высказывание и его отрицание, то, используя данные формулы в качестве схем вывода, можно получить любое высказывание. В подобного рода переходах есть элемент парадоксальности. Особенно заметным он становится, когда в качестве следствия берется явно ложное и совершенно не связанное с посылками высказывание. Напр.: «Если Солнце и звезда, и не звезда, то Луна сделана из зеленого сыра».
3. Д. С. есть своего рода предостережение против принятия ложного высказывания: введение в научную теорию такого высказывания ведет к тому, что в ней становится доказуемым все что угодно и она перестает выполнять свои функции. Однако предостережение не настолько очевидно, чтобы стать одним из правил логического следования. Не все современные описания следования принимают 3. Д. С. в качестве правомерного способа рассуждения. Уже построены теории логических связей, в которых этот и подобные ему способы рассуждения считаются недопустимыми.
Если 3. Д. С. не принимается, то появление противоречия в системе утверждений становится допустимым. Такое более «терпимое» отношение к противоречию лежит в основе логических теорий, получивших название паранепротиворечивой логики. ЗАКОН ИСКЛЮЧЕННОГО ТРЕТЬЕГО – логический закон, согласно которому истинно или само высказывание, или его отрицание. Закон устанавливает связь между противоречащими друг другу высказываниями: одно из таких высказываний истинно. Напр.: «Аристотель умер в 322 г. до н.э. или он не умер в этом году». «Завтра будет морское сражение или завтра не будет морского сражения» и т.п.
Само название закона выражает его смысл: дело обстоит так, как описывается в рассматриваемом высказывании, или так, как говорит его отрицание; третьего варианта нет («третьего не дано»).
Символически 3. и. т. представляется формулой (р – некоторое высказывание; v – дизъюнкция, «или»; – отрицание, «неверно, что»):
pvp, р или не-р.
3. и. т. был известен еще до Аристотеля. Однако он первым сформулировал этот закон, подчеркнув его важность для понимания мышления: «Не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо что бы то ни было одно либо утверждать, либо отрицать».
От Аристотеля идет традиция давать 3. и. т. разные интерпретации.
1. З. и. т. истолковывается как принцип логики, говорящий о высказываниях и их истинности: или высказывание, или его отрицание должно быть истинным.
2. Закон понимается как утверждение об устройстве самого мира: всякий объект или реально существует, или не существует.
3. Закон звучит как принцип методологии научного познания: исследование каждого объекта должно вестись до тех пор и быть настолько полным, чтобы относительно каждого утверждения об этом объекте можно было решить, истинно оно или нет.
Нередко полагают, что эти три истолкования – логическое, онтологическое и методологическое – различаются между собой только словесно. На самом деле это не так. Устройство мира, занимающее онтологию, и своеобразие научного исследования, интересующее методологию, – темы эмпирического, опытного изучения. Получаемые с его помощью положения являются эмпирическими истинами. Принципы же логики не вытекают из онтологических соображений и представляют собой не эмпирические, а логически необходимые истины.
Аристотель сомневался в приложимости 3. и. т. к высказываниям о будущих событиях: в настоящий момент наступление некоторых из них еще не предопределено. Нет причины ни для того, чтобы они произошли, ни для того, чтобы они не случились. «Через пять лет в этот же день будет идти дождь» – это высказывание в настоящий момент ни истинно, ни ложно. Таким же является его отрицание. Сейчас нет причины ни для того, чтобы через пять лет пошел дождь, ни для того, чтобы его не было. Но 3. и. т. утверждает, что или само высказывание, или его отрицание истинно. Значит, заключал Аристотель, закон следует ограничить высказываниями о прошлом и настоящем и не прилагать его к высказываниям о будущем.
В XX в. размышления Аристотеля над З. и .т. натолкнули на мысль о возможности принципиально нового направления в логике. Была создана многозначная логика.
Последовательная критика 3. и. т. берет начало от голландского математика и логика Л. Брауэра. Критика Брауэра положила начало новому направлению в формальной логике – интуиционистской логике.
Одной из предпосылок особого внимания к 3. и. т. является его широкая применимость в самых разных областях рассуждений. Человек говорит прозой или не говорит прозой, кто-то рыдает или не рыдает, дождь идет или не идет и т.п. – других вариантов не существует. Это известно каждому, что показывает, насколько укоренен 3. и. т. в нашем мышлении и с каким автоматизмом осуществляется его применение в рассуждениях. ЗАКОН КЛАВИЯ – логический закон, характеризующий связь импликации («если, то») и отрицания. Его можно передать так: если из отрицания некоторого высказывания вытекает само это высказывание, то оно является истинным. Или короче: высказывание, вытекающее из своего собственного отрицания, истинно. Иначе говоря: если необходимым условием ложности некоторого высказывания является его истинность, то это высказывание истинно. Напр., если условием того, чтобы машина не работала, является ее работа, то машина работает.
Закон назван именем Клавия – ученого иезуита, жившего в XVI в., одного из создателей григорианского календаря. Клавий обратил внимание на этот закон в своем комментарии к «Началам» Евклида. Одну из своих теорем Евклид доказал из допущения, что она является ложной.
С использованием символики логической (р – некоторое высказывание; -> – условная связь, «если, то»; – отрицание, «неверно, что») 3. К. представляется формулой:
(р->р)->р,
если не-р имплицирует р, то верно р.
3. К. лежит в основе рекомендации, касающейся доказательства: если хочешь доказать А, выводи A из допущения, что верным является не-А. Напр., нужно доказать утверждение «Трапеция имеет четыре стороны». Отрицание этого утверждения: «Неверно, что трапеция имеет четыре стороны». Если из этого отрицания удается вывести утверждение, то последнее будет истинно.
Эту схему рассуждения использовал однажды древнегреческий философ Демокрит в споре с софистом Протагором, который утверждал: «Истинно все то, что к.-л. приходит в голову». На это Демокрит ответил, что из положения «Каждое высказывание истинно» вытекает истинность и его отрицания: «Не все высказывания истинны». И, значит, это отрицание, а не положение Протагора на самом деле истинно.
3. К. является одним из случаев общей схемы косвенного доказательства: из отрицания утверждения выводится само это утверждение, вместе с отрицанием оно составляет логическое противоречие; это означает, что отрицание ложно, а верным является само утверждение.
К 3. К. близок по своей структуре другой логический закон, отвечающий этой же общей схеме: если из утверждения вытекает его отрицание, то последнее истинно. Напр., если условием того, что поезд прибудет вовремя, будет его опоздание, то поезд опоздает. Иначе говоря: если необходимым условием истинности некоторого утверждения является его ложность, то утверждение ложно.
Символически:
(p->p)->p,
если р имплицирует не-р, то верно не-р. Данный закон представляет собой схему рассуждения, идущего от некоторого утверждения к его отрицанию. Можно сказать, что он в некотором смысле слабее, чем З. К., представляющий рассуждение, идущее от отрицания утверждения к самому утверждению. В частности, оба эти закона имеют место в логике классической, но 3. К. не принимается в интуиционистской логике. ЗАКОН КОММУТАТИВНОСТИ (от лат. commutatio – изменение, перемена) – общее название логических законов, позволяющих менять местами высказывания, связанные конъюнкцией («и»), дизъюнкцией («или»), эквивалентностью («если и только если») и др. Эти законы аналогичны алгебраическим законам коммутативности для умножения, сложения и др., по которым результат умножения не зависит от порядка множителей, сложения - от порядка слагаемых и т.д.
Символически 3. к. для конъюнкции и дизъюнкции записываются так (р, q – некоторые высказывания, & – конъюнкция, v – дизъюнкция, = – эквивалентность):
(p&q) = (q&p), р и q тогда и только тогда, когда q и р;
(pvq) = (qvp), р или q, если и только если q или р.
Данные эквивалентности можно проиллюстрировать примерами: «Волга – самая длинная река в Европе и Волга впадает в Каспийское море в том и только том случае, если Волга впадает в Каспийское море и Волга является самой длинной рекой в Европе»; «Завтра будет дождь или будет снег, если и только если завтра будет снег или завтра будет дождь».
Существуют важные различия между употреблением слов «и» и «или» в повседневном языке и в логике. В обычном языке этими словами соединяются два высказывания, связанные по своему содержанию. Нередко обычное «и» употребляется при перечислении, а обычное «или» предполагает, что мы не знаем, какое именно из соединяемых им двух высказываний истинно. В логике значение «и» и «или» упрощается и делается более независимым от временной последовательности, от психологических факторов и т.п. «И» и «или» в логике коммутативны. Но «и» обычного языка, как правило, коммутативным не является. Скажем, «Он сломал ногу и попал в больницу» очевидно не равносильно «Он попал в больницу и сломал ногу». ЗАКОН КОММУТАЦИИ (от лат. commutatio – изменение, перемена) – логический закон, говорящий о возможности перестановки двух последовательных оснований некоторого условного высказывания. Словами: первое влечет, что если второе, то третье, в том и только том случае, когда второе влечет, что если первое, то третье. Напр., утверждение «Если население Земли будет расти нынешними темпами, то, если не будет значительно поднят уровень сельскохозяйственного производства, наступит кризис» равносильно утверждению «Если уровень сельскохозяйственного производства не будет значительно поднят, то в случае роста населения Земли нынешними темпами наступит кризис».
С применением символики логической 3. к. записывается таким образом (р, q, r – некоторые высказывания; -> – импликация, «если, то»; = – эквивалентность, «если и только если»):
(p -> (q ->r)) = (q -> (p -> r)),
р имплицирует, что q имплицирует r, если и только если q имплицирует, что р имплицирует r. ЗАКОН КОМПОЗИЦИИ (от лат. compositio – сочинение, составление) – общее название ряда логических законов, позволяющих объединять следствия определенных условных высказываний или разделять их основание.
Один из этих законов можно выразить так: если верно, что если первое, то второе, и если первое, то третье, то верно, что если первое, то второе и третье. Напр.: «Если верно, что стороны квадрата равны, и верно, что его диагонали равны, то у квадрата равны как его стороны, так и его диагонали».
Символически (р, q, r – некоторые высказывания; & – конъюнкция, «и»; -> – импликация, «если, то»):
((p->q)&(p->r))->(р->(q&r)),
если (если р, то q) и (если р, то r), то (если р, то q и r). Иногда этот закон называют также законом гипотетического силлогизма.
Другой 3. к.: если дизъюнкция двух высказываний влечет третье высказывание, то каждый из членов этой дизъюнкции влечет это высказывание. Напр.: «Если верно, что рукопись, брошенная в огонь или брошенная в воду, погибнет, то верно, что рукопись, брошенная в огонь, погибнет».
Символически (v – дизъюнкция, «или»):
((pvq)->r)->(p->r),
если (если р или q, то r), то (если р, то r); ((pvg)->r)->(q->r),
если (если р или q, то r), то (если q, то r). ЗАКОН КОСВЕННОГО ДОКАЗАТЕЛЬСТВА – логический закон, позволяющий делать заключения об истинности какого-то высказывания на основании того, что отрицание этого высказывания влечет противоречие. Напр.: «Если из того, что 11 не является простым числом, вытекает то, что оно делится на число, отличное от самого себя и единицы, и то, что оно не делится на такое число, то 11 есть простое число».
С использованием символики логической (p, q – некоторые высказывания; -> – импликация, «если, то»; & – конъюнкция, «и»; – отрицание, «неверно, что») закон записывается так:
( p->q)&(p->q)->p,
если (если не-р, то q) и (если не-р, то не-q), то р. 3. к. д. обычно называется также формула:
(p->q&q)->p,
если (если не-р, то q и не-q), то р. Напр.: «Если из-того, что 10 не является четным числом, вытекает то, что оно делится и не делится на 2, то 10 – четное число». ЗАКОН МЫШЛЕНИЯ – термин традиционной логики, обозначавший требование к логически совершенному мышлению, имеющее формальный характер, т.е. не зависящее от конкретного содержания мыслей. 3. м. назывались также законами логики или (формально-) логическими законами. Из множества З. м. выделялись т. наз. основные З. м. (логики), связанные, как считалось, с наиболее существенными свойствами мышления – такими, как определенность, непротиворечивость, последовательность, обоснованность. Основные 3. м. рассматривались как наиболее очевидные из всех утверждений логики, являющиеся чем-то вроде аксиом этой науки. Под неясное понятие основного 3. м. подводились чаще всего непротиворечия закон, тождества закон, закон исключенного третьего. Нередко к ним добавляли достаточного основания принцип и принцип «обо всех и ни об одном» («сказанное обо всех предметах какого-то рода верно и о некоторых из них, и о каждом в отдельности; неприложимое ко всем предметам неверно также в отношении некоторых и отдельных из них»).
В концепции основных 3. м. собственно логическое содержание смешивалось с теоретико-познавательным и с расплывчатыми методологическими рекомендациями (требованиями обосновывать каждое выдвигаемое утверждение, доводить исследование любого вопроса до полной определенности, выделять обсуждаемые объекты по достаточно устойчивым признакам и т.п.).
Логика современная (математическая, символическая) показала, что логических законов бесконечно много и нет оснований делить их на основные и второстепенные. Построены логические системы, в которых не являются законами закон исключенного третьего (интуиционистская логика, некоторые системы многозначной логики), непротиворечия закон (паранепротиворечивая логика). Термин «3. м.» в логике современной не употребляется. ЗАКОН ЭКСПОРТАЦИИ – ИМПОРТАЦИИ (от лат. exportare – вывозить, importare – ввозить) – логический закон, говорящий о заменимости в определенных случаях конъюнкции («и») импликацией («если, то»), и наоборот. Его можно передать так: первое и второе влечет третье тогда и только тогда, когда первое влечет, что второе влечет третье.
Закон слагается из двух импликаций. Одна из них – закон экспортации (вынесения) – с использованием символики логической представляется так (р, q, r – некоторые высказывания, & -конъюнкция, -> – импликация):
((p&q)->r)->(p->(q->r)),
если (если р и q, то r), то (если р, то (если q, то r)). Напр.: «Если верно, что плоская геометрическая фигура, имеющая четыре равные стороны и четыре равных угла, является квадратом, то, если у плоской фигуры четыре равные стороны, она является квадратом, если у нее четыре равных угла».
Вторая импликация, входящая в данный закон, именуется законом импортации (внесения). Символическая ее запись:
(p->(q->r))->((p&q)->r),
если верно, что (если р, то (если q, то r)), то (если р и q, то r). ЗНАК – материальный предмет, воспроизводящий свойства, отношения некоторого другого предмета. Различают языковые и неязыковые З. Среди последних выделяют три разновидности. 3. – копии обладают определенным сходством с представляемыми ими объектами, напр. фотографии, отпечатки пальцев и т.п. 3. – признаки связаны с обозначаемыми объектами как следствия со своими причинами, напр. дым – 3. и следствие огня. З. – символы представляют собой некоторые наглядные образы, используемые для представления отвлеченного и часто весьма значительного содержания, напр. чайка – символ Московского Художественного театра, Московский Кремль – символ Москвы и России и т.п. Языковые 3. характеризуются тем, что не функционируют независимо друг от друга. Они объединяются в систему, правила которой определяют способы построения 3. – правила грамматики или синтаксиса, а также правила приписывания знакам смысла, значения, употребления. Выделяют 3. естественных и искусственных языков. 3. естественного языка – отдельные слова, предложения, выражения, тексты и т.п. – состоят как из звуковых 3., так и из соответствующих им рукописных, типографских и иных 3. Развитие науки привело к введению в естественные языки специальных графических 3., используемых для выражения научных понятий: математических 3., химических, физических и иных 3. Из 3. такого рода строятся искусственные языки, правила которых – в отличие от правил естественных языков – формулируются в явном виде. Искусственные языки находят преимущественное применение в науке, где они служат не только для общения между учеными, но и как мощное средство получения новой информации об изучаемых объектах.
Различают предметное, смысловое и экспрессивное значение 3. Предмет, обозначаемый 3., называется предметным значением или денотатом 3. 3. обозначает свой предмет, но выражает свой смысл – свойство представлять определенные стороны, черты, характеристики обозначаемого объекта, фиксирующие область приложения 3. В науке смысл 3. выражается в понятии. Под экспрессивным значением 3. понимают выражаемые с помощью данного 3. чувства и желания человека, употребившего данный 3. в определенной ситуации.
С развитием способности извлекать и перерабатывать информацию о предметах, оперируя не с самими предметами, а со 3., их представляющими, связаны революционные перевороты в развитии науки. Напр., разработка математической символики в XVI-XVII вв. содействовала резкому ускорению развития математики и расширению сферы ее приложений в механике, астрономии, физике; развитие формализованных, информационных, машинных языков было тесно связано с развитием кибернетики. Создание специальной символики обычно открывает перед наукой новые возможности: рационально построенные системы 3. позволяют в обозримой форме выражать соотношения между изучаемыми явлениями; добиваться однозначности используемых терминов; фиксировать такие понятия, для которых в обычном языке нет словесных выражений; формулы часто выражают не только некоторый готовый результат, но и тот путь, следуя которому этот результат можно получить. Выражение информации с помощью 3. делает возможной ее передачу по техническим каналам связи и ее математическую, логическую, статистическую обработку с помощью вычислительных устройств (см.: Денотат, Смысл, Имя). ЗНАНИЕ – результат процесса познания действительности, получивший подтверждение в практике; адекватное отражение объективной реальности в сознании человека (представления, понятия, суждения, теории). 3. фиксируется в знаках естественных и искусственных языков. Различают обыденное и научное 3. Обыденное, или житейское, 3. опирается на здравый смысл и формы повседневной практической деятельности. Обыденное 3. служит основой ориентации человека в окружающем мире, основой его поведения и предвидения.
Научное 3. отличается от обыденного своей систематичностью, обоснованностью и глубиной проникновения в сущность вещей и явлений. Наука объединяет разрозненные 3., полученные в повседневной практике, в стройные системы, опирающиеся на совокупность исходных принципов, в которых отображаются существенные связи и отношения вещей, – научные теории. Законы и теории науки сознательно и целенаправленно сопоставляются с действительностью для установления их истинности и получают обоснование в эксперименте и практических приложениях. Для фиксации научного 3. используется научный язык c точными понятиями, допускающий применение математического аппарата для обработки и сжатого выражения полученных данных. Использование особых познавательных средств позволяет науке получать знания о таких сторонах и свойствах объективного мира, которые не даны человеку в его повседневном опыте.
Научное 3. принято разделять на эмпирическое и теоретическое. Эмпирическое 3. – результат применения эмпирических методов познания – наблюдения, измерения, эксперимента. Оно, как правило, констатирует качественные и количественные характеристики объектов и явлений. Устойчивая повторяемость связей между эмпирическими характеристиками выражается с помощью эмпирических законов, часто носящих вероятностный характер. Теоретический уровень научного 3. предполагает открытие законов, дающих возможность идеализированного восприятия, описания и объяснения эмпирических ситуаций, т.е. познания сущности явлений. Теоретическое и эмпирическое научное 3. функционирует в тесной взаимосвязи: теоретические представления возникают на основе обобщения эмпирических данных и, в свою очередь, влияют на обогащение и изменение эмпирического 3. Эти уровни 3. выражаются соответственно в эмпирическом и теоретическом языках. Термины эмпирического языка обозначают чувственно воспринимаемые или экспериментально фиксируемые предметы и явления. Предложения эмпирического языка непосредственно соотносятся с действительностью – с помощью наблюдения или эксперимента. Термины теоретического языка относятся к идеализированным, абстрактным объектам, что делает невозможной их непосредственную экспериментальную проверку.
В методологии научного познания иногда говорят о явном и неявном 3. К явному относят 3., фиксированное в языке науки - в утверждениях и теориях. Неявное, т.е. не выраженное в языке, 3. состоит из навыков и умений читать чертежи, графики, пользоваться приборами и инструментами, применять явное 3. в конкретных ситуациях.
Роль 3. в развитии человечества постоянно возрастает. Главным источником 3. была и остается материальная практика. Однако производство 3., выделившись в самостоятельную сферу человеческой деятельности, оказывает мощное воздействие на развитие самой практики. Революционные преобразования 3. всегда вызывали крупные изменения в средствах производства, резко повышали производительность общественного труда, содействовали изменению условий жизни людей. Взаимосвязь научного 3. и общественного производства выражается в понятии научно-технической революции, ведущим фактором которой является рост научного 3. ЗНАЧЕНИЕ – содержание, связываемое с тем или иным языковым выражением. Вопрос о 3. языковых выражений исследуется лингвистикой, семиотикой и логической семантикой. В последней наибольшим признанием пользуется концепция 3., предложенная немецким математиком и логиком Г. Фреге в конце XIX в. Дальнейшую разработку эта концепция получила в трудах Б. Рассела, Р. Карнапа, К. И. Льюиса и др.
В концепции Фреге все языковые выражения рассматриваются как имена, т.е. как обозначения некоторых внеязыковых объектов. Объект, обозначаемый языковым выражением, называется денотатом этого выражения. Напр., собственное имя «Рембрандт» обозначает голландского художника Рембрандта, а сам этот художник является денотатом имени «Рембрандт». Точно так же и имя «автор романа "Айвенго"» обозначает шотландского писателя, который является денотатом этого имени и имени «Вальтер Скотт».
Иногда денотат отождествляют со 3. Однако такое отождествление не всегда правомерно, ибо денотат представляет собой лишь одну сторону 3. языковых выражений. В этом легко убедиться, сопоставив два имени, имеющие один и тот же денотат и тем не менее различные, напр.: «автор романа "Айвенго"» и «Вальтер Скотт». Эти два имени различаются своим содержанием: первое говорит о том, что обозначаемый им объект написал определенный роман, в то время как второе говорит о том, что он носит имя «Вальтер» и фамилию «Скотт». Разница в содержании этих имен выступает с полной очевидностью в вопросе: «Был ли Вальтер Скотт автором романа "Айвенго"?» Если бы имена «Вальтер Скотт» и «автор романа "Айвенго"» были тождественны, то в этом вопросе можно было бы заменить одно другим. Однако вопрос «Был ли Вальтер Скотт Вальтером Скоттом?» имеет совершенно иное содержание, и едва ли кому-нибудь придет в голову задавать такой вопрос.
Каждое языковое выражение наряду с денотатом имеет смысл – содержание выражения, которое усваивается в процессе его понимания. Языковое выражение обозначает свой денотат и выражает свой смысл. Разные выражения могут иметь один и тот же денотат, но различаться по смыслу. Выражение может иметь смысл, но не иметь денотата. Денотат и смысл – две стороны 3. языковых выражений.
Эта концепция 3. применима и к предложениям. Предложение можно рассматривать как имя некоторого истинностного 3. – истины или лжи. Истина является денотатом истинного предложения, ложь – денотатом ложного предложения. Смыслом предложения является выражаемая им мысль, суждение. В формальных логических системах, в которых отвлекаются от смысла предложений, истинные предложения оказываются взаимозаменяемыми и точно так же взаимозаменимы ложные предложения. ИДЕАЛИЗАЦИЯ – процесс мысленного конструирования представлений и понятий об объектах, не существующих и не могущих существовать в действительности, но сохраняющих некоторые черты реальных объектов. В процессе И. мы, с одной стороны, отвлекаемся от многих свойств реальных объектов и сохраняем лишь те из них, которые нас в данном случае интересуют, с другой – вводим в содержание образуемых понятий такие признаки, которые в принципе не могут принадлежать реальным объектам. В результате И. возникают идеальные, или идеализированные, объекты, напр., «материальная точка», «прямая линия», «идеальный газ», «абсолютно черное тело», «инерция» и т.п. Любая наука, выделяя из реального мира свой аспект для изучения, пользуется И. и идеализированными объектами. Последние гораздо проще реальных объектов, что позволяет дать их точное математическое описание и глубже проникнуть в природу изучаемых явлений. Плодотворность научных И. проверяется в эксперименте и материальной практике, в ходе которой осуществляется соотнесение теоретических идеализированных объектов с реальными вещами и процессами. ИДЕМПОТЕНТНОСТИ ЗАКОН (от лат. idempotens – сохраняющий ту же степень) – логический закон, позволяющий исключить повторение одного и того же высказывания. Его формулировка: повторение высказывания через «и» и «или» равносильно самому высказыванию. Напр., «Марс – планета и Марс – планета» есть то же самое, что «Марс – планета»; «Солнце – звезда или Солнце – звезда» то же самое, что «Солнце – звезда».
С применением символики логической (р – некоторое высказывание; & – конъюнкция, «и»; v – дизъюнкция, «или»; = ()– эквивалентность, «если и только если») закон записывается так:
(р&р) = (pvp) = р,
р и р, если и только если р, и р или р, если и только если р. Закон позволяет исключить из логики коэффициенты и показатели степеней. В алгебре а*а=а2 и а+а=2а; аналогами операций умножения и сложения в логике являются конъюнкция и дизъюнкция, однако, как показывает И. з., аналогия не является полной. ИЛЛЮСТРАЦИЯ (от лат. illustratio – прояснять) – факт или частный случай, призванный укрепить убежденность аудитории в правильности уже известного и принятого положения. Пример подталкивает мысль к новому обобщению и подкрепляет это обобщение, И. проясняет известное общее положение, демонстрирует его значение с помощью целого ряда возможных применений, усиливает эффект его присутствия в сознании аудитории. С различием задач примера и И. связано различие критериев их выбора. Пример должен выглядеть достаточно твердым, однозначно трактуемым фактом. И. вправе вызывать небольшие сомнения, но она должна особенно живо воздействовать на воображение аудитории, останавливать на себе ее внимание. И. в гораздо меньшей степени, чем пример, рискует быть неверно интерпретированной, т.к. за нею стоит уже известное положение. Различие между примером и И. не всегда является отчетливым. Аристотель различал два употребления примера, в зависимости от того, имеются у оратора к.-л, общие принципы или нет: «...необходимо бывает привести много примеров тому, кто помещает их в начале, а кто помещает их в конце, для того достаточно одного [примера], ибо свидетель, заслуживающий веры, бывает полезен даже в том случае, когда он один». Роль частных случаев является, по Аристотелю, разной в зависимости от того, предшествуют они тому общему положению, к которому относятся, или следуют после него. Дело, однако, в том, что факты, приводимые до обобщения, – это, как правило, примеры, в то время как один или немногие факты, даваемые после него, представляют собой И. Об этом говорит и предупреждение Аристотеля, что требовательность слушателя к примеру более высока, чем к И. Неудачный пример ставит под сомнение то общее положение, которое он призван подкрепить. Противоречащий пример способен даже опровергнуть это положение. Иначе обстоит дело с неудачной, неадекватной И.: общее положение, к которому она приводится, не ставится под сомнение, и неадекватная И. расценивается скорее как негативная характеристика того, кто ее применяет, свидетельствующая о непонимании им общего принципа или о его неумении подобрать удачную И. Неадекватная И. может иметь комический эффект: «Надо уважать своих родителей. Когда один из них вас ругает, тут же ему возражайте». Ироническое использование И. является особенно эффектным при описании какого-то определенного лица: сначала этому лицу дается позитивная характеристика, а затем приводится И., прямо несовместимая с нею. Так, в «Юлии Цезаре» Шекспира Антоний, постоянно напоминая, что Брут – честный человек, приводит одно за другим свидетельства его неблагодарности и предательства.
Конкретизируя общее положение с помощью частного случая, И. усиливает эффект присутствия. На этом основании в ней иногда видят образ, живую картинку абстрактной мысли. И. не ставит, однако, перед собой цель заменить абстрактное конкретным и тем самым перенести рассмотрение на другие объекты. Это делает аналогия, И. же – не более чем частный случай, подтверждающий уже известное общее положение или облегчающий более отчетливое его понимание.
Часто И. выбирается с учетом того эмоционального резонанса, который она способна вызвать. Так поступает, напр., Аристотель, предпочитающий стиль периодический стилю связному, не имеющему ясно видимого конца: «... потому что всякому хочется видеть конец; по этой-то причине [состязающиеся в беге] задыхаются и обессиливают на поворотах, между тем как раньше они не чувствовали утомления, видя перед собой предел бега».
Сравнение, используемое в аргументации и не являющееся сравнительной оценкой (предпочтением), обычно представляет собой И. одного случая другим, при этом оба случая рассматриваются как конкретизация одного и того же общего принципа. Типичный пример сравнения: «Людей показывают обстоятельства. Стало быть, когда тебе выпадает какое-то обстоятельство, помни, что это бог, как учитель гимнастики, столкнул тебя с грубым концом» (Эпиктет. Беседы. Кн. 1, 24, 1). ИМПЛИКАЦИЯ (от лат. implicatio – сплетение, от implico – тесно связываю) – логическая связка, соответствующая грамматической конструкции «если ..., то ...», с помощью которой из двух простых высказываний образуется сложное высказывание. В импликативном высказывании различают антецедент (основание) – высказывание, идущее после слова «если», и консеквент (следствие) – высказывание, идущее за словом «то». Импликативное высказывание представляет в языке логики условное высказывание обычного языка. Последнее играет особую роль как в повседневных, так и в научных рассуждениях, основной его функцией является обоснование одного путем ссылки на нечто другое.
В современной логике имеется большое число И., различающихся своими формальными свойствами. Наиболее известны из них И. материальная, строгая И. и релевантная (уместная) И.
Материальная И. обозначается знаком . Это одна из основных связок логики классической. Определяется она через функции истинности: И. ложна только в случае истинности антецедента и ложности консеквента и истинна во всех остальных случаях. Условное высказывание «Если А, то В» предполагает некоторую реальную связь между тем, о чем говорится в A и В; выражение А В такой связи не предполагает.
Строгая И. определяется через модальное понятие (логической) невозможности: «А строго имплицирует В» означает «Невозможно, чтобы А было истинно, а В ложно».
В релевантной логике И. понимается как условный союз в его обычном смысле. В случае релевантной И. нельзя сказать, что истинное высказывание может быть обосновано путем ссылки на любое высказывание и что с помощью ложного высказывания можно обосновать какое угодно высказывание. ИМПЛИКАЦИЯ МАТЕРИАЛЬНАЯ – импликация в трактовке логики классической.
Для установления истинности И. м. «Если А, то В» достаточно выяснить истинностные значения высказываний А и В. И. м. истинна в трех случаях: 1) ее основание и ее следствие истинны; 2) основание ложно, а следствие истинно; 3) и основание и следствие ложны. Только в одном случае, когда основание истинно, а следствие ложно, вся импликация ложна. При установлении истинности И. м. не предполагается, что высказывания A и В связаны между собой по содержанию. В случае истинности В высказывание «Если A, то В» истинно, независимо от того, является A истинным или ложным и связано оно по смыслу с В или нет. Истинными считаются, напр., высказывания: «Если на Солнце есть жизнь, то дважды два равно четыре», «Если Волга – озеро, то Токио – большой город» и т.п. Условное высказывание истинно также тогда, когда А ложно. При этом опять-таки безразлично, истинно В или нет и связано оно по содержанию с A или нет. К истинным относятся, напр., высказывания: «Если Солнце – куб, то Земля – треугольник», «Если дважды два равно пять, то Токио – маленький город» и т.п. В обычном рассуждении все эти высказывания вряд ли будут рассматриваться как имеющие смысл и еще в меньшей степени как истинные. Очевидно, что И. м. плохо согласуется с обычным пониманием условной связи.
В классической логике И. м. является формальным аналогом условного высказывания. Но, схватывая многие важные черты «логического поведения» условного высказывания, И. м. не является достаточно адекватным его описанием. Ряд законов классической логики, содержащих И. м. и не согласующихся с обычными, или интуитивными, представлениями о логических связях, получил название парадоксов материальной импликации (см.: Парадоксы импликации). В числе этих парадоксов закон Дунса Скота (парадокс ложного высказывания), парадокс истинного высказывания и др. В последние полвека были предприняты энергичные попытки реформировать теорию импликации. При этом речь шла не об отказе от И. м., а о введении наряду с нею другого понятия импликации, учитывающего не только истинностные значения высказываний, но и связь их по содержанию. Наибольшую известность среди таких «неклассических» импликаций получили строгая импликация и релевантная импликация (см.: Логическое следование). Теории «неклассических» импликаций являются сужениями классической логики, выступающей в качестве своего рода предельного их случая. Польский логик А. Тарский отмечал: «...в настоящее время представляется почти несомненным, что теория И. м. превзойдет все другие теории в простоте, и во всяком случае не надо забывать, что логика, опирающаяся на это простое понятие, оказалась вполне пригодной основой для самых сложных и тонких математических рассуждений». ИМЯ – выражение естественного или искусственного, формализованного языка, обозначающее отдельный предмет, совокупность сходных предметов, свойства, отношения и т.п. Напр., слово «Наполеон» обозначает отдельный предмет – Наполеона Бонапарта; слово «полководец» обозначает класс людей, каждый из которых командовал войсками в сражениях; слово «белый» можно рассматривать как обозначение свойства белизны; слово «выше» – как обозначение определенного отношения между предметами.
Объект, обозначаемый И., называется денотатом этого И.; содержание И., т.е. способ, которым оно указывает на свой денотат, называется смыслом И. В традиционной логике понятиям «денотат» и «смысл» соответствуют понятия объема и содержания. Между И. и его денотатом имеется отношение именования, т.е. И. называет, именует свой денотат. При построении логических систем стремятся к тому, чтобы отношение именования удовлетворяло трем следующим принципам.
1.Принцип однозначности: И. должно иметь только один денотат, т.е. обозначать только один предмет, класс предметов или свойство. Принцип однозначности в естественных языках часто нарушается из-за многозначности и неопределенности слов и выражений. Однако следует стремиться к тому, чтобы по крайней мере в пределах одного контекста или одного рассуждения наши слова и выражения относились к одним и тем же объектам. В противном случае неизбежны логические ошибки.
2. Принцип предметности: всякое предложение говорит о денотатах входящих в него выражений. Напр., предложение «Уральские горы разделяют Европу и Азию» говорит не об именах «Уральские горы», «Европа», «Азия», а о той горной цепи, которая разделяет Европейский и Азиатский материки. Принцип предметности кажется достаточно очевидным, однако, когда мы начинаем говорить о самих языковых выражениях или о математических объектах, может произойти смешение И. с их денотатами.
3. Принцип взаимозаменимости: если два И. имеют один и тот же денотат, то одно из них можно заменить другим, причем предложение, в котором осуществляется такая замена, не изменяет своего истинностного значения. Напр., И. «Москва» и «столица России» имеют один и тот же денотат, поэтому в предложении «Москва – многомиллионный город» можно И. «Москва» заменить И. «столица России»: «Столица России – многомиллионный город». Второе предложение остается истинным.
Принцип взаимозаменимости называют также принципом экстенсиональности (объемности), т.к. он служит для отличения экстенсиональных контекстов от интенсиональных. Экстенсиональным наз. такой контекст, для которого важны только денотаты языковых выражений. Поэтому принцип взаимозаменимости в таком контексте выполняется: при замене И. с одним денотатом предложение сохраняет свое истинностное значение. Однако если для контекста важен не только денотат, но и смысл И., принцип взаимозаменимости нарушается: замена И. с одним денотатом может сделать истинное предложение ложным. Поэтому неэкстенсиональными, или интенсиональными, наз. контексты, в которых принцип взаимозаменимости нарушается. Напр., цифра «9» и И. «число планет Солнечной системы» имеют один и тот же денотат (т.к. число планет Солнечной системы равно 9). Рассмотрим предложение: «9 необходимо больше 7». Это предложение истинно. Заменим теперь в этом предложении «9» именем «число планет Солнечной системы», получим предложение: «Число планет Солнечной системы необходимо больше 7». Последнее предложение очевидно ложно, т.к. нет никакой необходимости в том, чтобы число планет Солнечной системы превосходило 7.
В зависимости от характера денотата и смысла И. подразделяются на классы.
Единичное (собственное) И. – И., денотатом которого является один-единственный предмет, напр. «Аристотель», «Монблан», «Нева», «величайший философ древности», «река, на которой стоит Ленинград» и т.п.
Общее И. – И., денотатом которого является класс однородных предметов, напр. «философ», «гора», «река» и т.п.
Пустое И. – И., у которого отсутствует денотат, т.е. не существует такого предмета, который обозначается данным И., напр. «единорог», «Зевс», «русалка», «кентавр» и т.п. Вопрос о пустоте или непустоте того или иного И. часто имеет большое значение, и на него не всегда просто ответить. Имеются логически противоречивые И., смысл которых включает в себя логически несовместимые признаки, напр. «круглый квадрат», «деревянное железо». Такие И. можно назвать логически пустыми. Однако существование женщин с рыбьим хвостом или существ, объединяющих в себе коня и человека, не противоречит законам логики, но с точки зрения физики и биологии невозможно. Поэтому И. «русалка» и «кентавр» пусты по естественнонаучным основаниям. Во многих случаях мы не знаем законов природы, отрицающих существование тех или иных объектов, поэтому вопрос о пустоте или непустоте соответствующих И. решается эмпирическим исследованием.
Конкретное И. – И., обозначающее отдельный предмет, вещь, в противоположность абстрактному И., обозначающему свойство или отношение между предметами. Напр., слово «стол» – конкретное И., т. к. обозначает предметы, целостные вещи, а слово «белизна» является абстрактным И., поскольку обозначает не предмет, а свойство предметов. Деление И. на конкретные и абстрактные осуществляется в рамках традиционной логики и не является вполне определенным. Во многих случаях довольно трудно решить, имеем ли мы дело с предметом или с некоторым свойством. Напр., такие слова, как «республика», «совесть» и т.п., можно истолковать и как обозначения предметов, и как обозначения свойств и отношений. ИНДИВИД (от лат. individuum – неделимое) – единичное как противоположность совокупности, массе; отдельное живое существо, особь, отдельный человек, в отличие от стада, группы, коллектива. В логике И. называют любой объект, обозначаемый единичным, или собственным, именем. Логические формальные исчисления, содержащие общие и экзистенциальные предложения, обычно предполагают существование непустой области к.-л. индивидуальных предметов – индивидов, к которым относятся утверждения формальной системы. Природа И. для логики безразлична, требуется только, чтобы они отличались один от другого и чтобы каждый И. обозначался одним именем. ИНДУКТИВНАЯ ЛОГИКА – раздел логики, изучающий индуктивные умозаключения, которые отличаются от дедуктивных умозаключений тем, что вывод в них вытекает из посылок не с необходимостью, а лишь с некоторой вероятностью. Типичным примером индуктивного умозаключения является переход от единичных фактов к общему утверждению. Современная И. л. в основном занимается анализом степени подтверждения гипотезы h на основании имеющегося свидетельства е. В формальной теории степень связи между гипотезой h и свидетельством е выражается функцией c(h,e), удовлетворяющей условию 0≤c(h,e) ≤1. Значение функции с (h, е) равно 1, если Л логически выводится из е; оно равно 0, если е противоречит Л; во всех остальных случаях оно располагается в интервале (0, 1) и характеризует большую или меньшую степень вероятности (подтверждения) гипотезы Л по отношению к свидетельству е. В некоторых теориях И. л. степень подтверждения гипотезы h оценивается не строго количественно, а лишь сравнительно – в терминах «больше – меньше» (см.: Индукция). ИНДУКТИВНОЕ ОПРЕДЕЛЕНИЕ – определение, позволяющее из некоторых исходных объектов теории с помощью некоторых операций строить новые объекты теории. И. о. находят широкое применение в математике, логике и других науках. Примером может быть И. о. натуральных чисел. Исходным объектом здесь будет число 0, исходной операцией – «следующее за n», т.е. операция, обеспечивающая переход от числа n к n + 1. Она обозначается «'» («n'» — «следующее за n»). И. о. состоит из ряда пунктов: 1) 0 является натуральным числом; 2) если n – натуральное число, то n' – натуральное число; 3) никаких натуральных чисел, кроме тех, которые получаются согласно применению пунктов (1) и (2), нет.
Таково же определение четного числа. Исходным объектом здесь является число 0, исходной операцией – операция прибавления двойки (+2), И. о. состоит из таких пунктов: 1) 0 – четное число; 2) если n – четное число, то n + 2 – четное число; 3) никаких (натуральных) чисел, кроме тех, которые порождены применением пунктов (1) и (2), нет.
Примером И. о. может быть И. о. формулы в исчислении высказываний.
Различают два основных вида И. о.: фундаментальные и нефундаментальные. Фундаментальными называются такие И. о., с помощью которых из исходных объектов порождается та или иная исходная предметная область. Нефундаментальными являются И. о., с помощью которых из заранее определенной области объектов выделяется некоторое ее подмножество. Приведенные выше И. о. натурального числа и формулы в исчислении высказываний являются фундаментальными, И. о. четного числа является нефундаментальным: предполагается, что область натуральных чисел дана с самого начала или порождена фундаментальным И. о., а мы на ней определяем некоторое подмножество натуральных чисел (т.е. множество «четные числа»). ИНДУКЦИИ КАНОНЫ (от греч. canon – правило, предписание) – методы установления причинных связей между явлениями. Сформулированы англ. логиком Д.С. Миллем (1806-1873) («методы Милля», «каноны Милля»). Он опирался на «Таблицы открытий» англ. философа Ф. Бэкона (1561-1626).
Метод единственного сходства: если предшествующие обстоятельства ABC вызывают явление abc, а обстоятельства ADE – явление ade, то делается заключение, что А – причина а (или что явления А и а причинно связаны). Так, желая установить, почему изучаемые маятники имеют одинаковый период колебания при различии материалов, из которых они изготовлены, различии форм и других их характеристик, мы обнаруживаем между ними единственное сходство: они имеют одинаковую длину. Отсюда делается заключение, что одинаковая длина маятников есть причина равенства периодов их колебаний.
Метод единственного различия: если предшествующие обстоятельства ABC вызывают явление abc, а обстоятельства ВС (явление A устраняется в ходе эксперимента) вызывают явление bc, то делается заключение, что А есть причина а. Основанием такого заключения служит исчезновение а при устранении A. Допустим, в спектре вещества, содержащего натрий, наблюдается желтая линия. При устранении натрия из этого вещества желтая линия исчезает. Делается заключение, что присутствие натрия в данном веществе есть причина желтой линии в наблюдаемом спектре.
Объединенный метод сходства и различия образуется как подтверждение результата, полученного с помощью метода единственного сходства, применением к нему метода единственного различия.
Метод сопутствующих изменений: если при изменении предшествующего явления а изменяется и наблюдаемое явление а, а остальные предшествующие явления остаются неизменными, то отсюда можно заключить, что А является причиной а. Так, изменяя температуру некоторого тела A, мы устанавливаем, что объем его также изменяется; при этом все иные обстоятельства, предшествующие явлению а, остаются неизменными. Делается заключение, что А есть причина а.
Метод остатков. Пусть изучаемое сложное явление U состоит из частей (abcd), а предшествующие обстоятельства ABC таковы, что A есть причина а, В есть причина b, С есть причина с. Поскольку abcd – части сложного явления и взаимосвязаны, можно предположить, что среди названных обстоятельств должно существовать обстоятельство D, которое и является причиной d – остатка изучаемого явления U. Так, французский астроном Леверье, используя метод остатков, предсказал существование планеты Нептун. При наблюдении планеты Уран было обнаружено ее отклонение от вычисленной орбиты. Далее было выяснено, что силы тяготения других известных планет (А, В, С) являются причинами величин отклонения abc. Оставалась необъясненной величина отклонения d. Леверье построил гипотезу о существовании неизвестной планеты D и описал некоторые ее характеристики. Вскоре немецкий астроном Галле открыл планету Нептун.
Иногда простая последовательность событий принимается за их причинную связь. В этом случае допускается ошибка, которая носит название «после этого, следовательно, по причине этого» (post hoc ergo propter hoc). Эта логическая ошибка явилась причиной многих суеверий. Напр., солнечное затмение рассматривалось как причина возникновения ряда народных бедствий на том основании, что когда-то солнечное затмение предшествовало войне, неурожайному году и т.п. ИНДУКЦИЯ (от лат. inductio – наведение) – умозаключение, в котором связь посылок и заключения не опирается на логический закон, в силу чего заключение вытекает из принятых посылок не с логической необходимостью, а только с некоторой вероятностью. И. может давать из истинных посылок ложное заключение; ее заключение может содержать информацию, отсутствующую в посылках. И. противопоставляется дедукция – умозаключение, в котором связь посылок и заключения опирается на закон логики и в котором заключение с логической необходимостью следует из посылок.
Два примера индуктивных умозаключений:
|