Главная страница

Словарь по логике_ Ивин. Словарь по логике Разработан на основе


Скачать 1.81 Mb.
НазваниеСловарь по логике Разработан на основе
Дата24.03.2019
Размер1.81 Mb.
Формат файлаdoc
Имя файлаСловарь по логике_ Ивин.doc
ТипДокументы
#71390
страница9 из 24
1   ...   5   6   7   8   9   10   11   12   ...   24


  • базисная Л., в которую входят классическая Л., модальная Л., многозначная Л., неклассические теории логического следования;

  • металогика, исследующая сами логические теории, их внутреннюю структуру и связи с описываемой ими реальностью;

  • разделы математического направления, включающие теорию доказательства, теорию множеств, теорию функций, Л. вероятностей, обоснование математики;

  • разделы, ориентированные на приложение в естественных и гуманитарных науках, такие, как индуктивная Л., изучающая проблематичные выводы, логические теории времени, причинности, норм, оценок, действия, решения и выбора и др.;

  • разделы, находящие применение при обсуждении определенных философских проблем: Л. бытия, Л. изменения, Л. части и целого, логические теории вопросов, знания, убеждения, воображения, стремления и т.п.

Границы между этими областями не являются четкими, одни и те же ветви Л. могут иметь одновременно отношение к философии и естествознанию, к математике и металогике и т.д.

Прояснение и углубление оснований современной Л. сопровождалось пересмотром и уточнением таких центральных ее понятий, как логическая форма, логический закон, доказательство, логическое следование и др.

Законы Л. долгое время представлялись абсолютными истинами, никак не связанными с опытом. Однако возникновение конкурирующих логических теорий, отстаивающих разные множества законов, показало, что Л. складывается в практике мышления и что она меняется с изменением этой практики. Логические законы – такие же продукты человеческого опыта, как и аксиомы евклидовой геометрии, тоже казавшиеся когда-то априорными. Именно постоянно повторяющаяся практика выявляла некоторые общие и инвариантные отношения между вещами, вовлеченными в трудовую деятельность, и закрепляла их в сознании в виде некоторых логических структур, лежащих в основе формулирования правил логики.

Доказательство, и в особенности математическое, принято было считать императивным и универсальным указанием, обязательным для всякого непредубежденного ума. Развитие Л. показало, однако, что доказательства вовсе не обладают абсолютной, вневременной строгостью и являются только опосредствованными средствами убеждения. Даже способы математической аргументации на деле историчны и социально обусловлены. В разных логических системах доказательствами считаются разные последовательности утверждений, и ни одно доказательство не является окончательным.

Перемены, происшедшие в Л. в XX в., приблизили ее к реальному мышлению и тем самым к человеческой деятельности, одной из разновидностей которой оно является.

Для правильного понимания предмета и задач формальной Л. важно четко представлять ее соотношение с диалектической Л. Диалектика как Л. исследует становление и развитие понятий и представлений, их отношения, переходы, противоречия. Диалектические принципы историзма, конкретности истины, единства абстрактного и конкретного, практики как критерия истины и т.д. направлены на познание закономерностей мышления, взятого в его движении и развитии, в последовательном постижении реальности. Формальная Л. главное внимание направляет на прояснение структуры готового знания, на описание его формальных связей и элементов. Диалектическая и формальная Л. – две разные науки, различающиеся как предметами своего исследования, так и методами.

Современная Л. находит применение во многих областях. В частности, она оказала влияние на развитие математики, прежде всего теории множеств, формальных систем, алгоритмов, рекурсивных функций; идеи и аппарат Л. используются в кибернетике, вычислительной технике, в электротехнике и др.
ЛОГИКА ВРЕМЕНИ, или: Временная логика, – раздел современной модальной логики, изучающий логические связи временных утверждений, т.е. утверждений, в которых временной параметр включается в логическую форму. Л. в. начала складываться в 50-е годы XX в. прежде всего благодаря работам англ. логика А. Н. Прайора, хотя первые попытки учесть роль временного фактора в логическом выводе относятся еще к античности (Аристотель, Диодор Кронос).

Задачей Л. в. является построение искусственных (формализованных) языков, способных сделать более ясными и точными, а следовательно, и более плодотворными рассуждения о предметах и явлениях, существующих во времени.

Л. в. представляет собой множество логических систем (логик), распадающихся на А-логику и B-логику времени. Первая ориентирована на временной ряд «прошлое – настоящее – будущее», вторая – на временной ряд «раньше – одновременно – позже».

В А-логике рассматриваются высказывания с «будет», «было», «всегда будет», «всегда было» и т.п. Понятия «будет» («было») и «всегда будет» («всегда было») взаимно определимы: «Будет A» («Было A») означает «Неверно, что всегда будет не-А» («Неверно, что всегда было не-А»). Напр., «Будет ветрено» означает то же, что «Неверно, что всегда будет безветренно».

В числе законов А-логики времени утверждения:

  • то, что всегда будет, будет; то, что всегда было, было (напр.: «Если всегда будет время, то оно будет»);

  • неверно, что наступит противоречивое событие; неверно, что было такое событие («Неверно, что было холодно и не холодно»);

  • если будет, что будет нечто, оно будет;

  • если неверно, что всегда было, что не всегда будет нечто, то оно имеет место сейчас;

  • будет, что нечто было, если и только если оно или есть сейчас, или будет, или уже было («Будет так, что шел снег, только если он или идет, или пойдет, или уже шел»);

  • всегда было, что всегда будет нечто, только если оно есть, всегда было и всегда будет («Всегда было, что всегда будет хорошая погода, в том и только том случае, если она есть, всегда была и всегда будет») и т.п.

Финским философом и логиком Г.X. фон Вригтом А-логика времени формулируется с использованием выражений «...и затем...» и «...и в следующей ситуации...». «A и затем В» означает «Сейчас А и будет В», что может пониматься также как «A изменяется (переходит) в B». Л. в. может, таким образом, истолковываться и как логика изменения.

В терминах временных понятий могут быть определены модальные понятия «необходимо» и «возможно»:

  • необходимым является то, что всегда было, есть и всегда будет («Пространство необходимо, только если оно всегда было, есть и всегда будет»);

  • возможно то, что или было, или имеет место, или будет («Возможно, что птицы улетают на юг, только если они уже улетели, улетают сейчас или улетят в будущем»).

В B-логике времени рассматриваются высказывания с «раньше», «позже» и «одновременно». Первые два из этих понятий взаимно определимы: «A раньше В» означает «В позже A». Одновременные события могут быть определены как такие, что ни одно из них не раньше другого.

Среди законов B-логики утверждения:

  • ничто не раньше самого себя;

  • если первое раньше второго, то неверно, что второе раньше первого;

  • если первое раньше второго, а второе одновременно с третьим, то первое раньше третьего и т.п.

Понятие «раньше» неопределимо через «было», «есть» и «будет»; раньше одно другого могут быть и два прошлых, и два будущих события. В свою очередь, временные оценки, включающие ссылку на «настоящее», несводимы к утверждениям с «раньше». А-логика и B-логика времени являются, таким образом, двумя самостоятельными, несводимыми друг к другу ветвями Л. в.

А-логика времени нашла приложения при обсуждении некоторых философских проблем, в анализе грамматических времен и др. B-логика использовалась при аксиоматизации определенных разделов физики, биологии, при обсуждении проблемы непротиворечивого описания движения и др.

Временные ряды «прошлое – настоящее – будущее» и «раньше – одновременно – позже» несводимы друг к другу. Они независимы в широких пределах и представляют собой две точки зрения на мир, два способа описания одних и тех же вещей и событий, дополняющие друг друга. Первый ряд употребляется по преимуществу в гуманитарных науках, второй – в естественных. Можно сказать, что первые понятия служат для описания становления мира, вторые – для описания его бытия. Поскольку временные ряды несводимы друг к другу, возникает вопрос, не является ли один из них более фундаментальным. Согласно распространенной точке зрения, в интерсубъективном, безличностном языке науки неправомерно употребление «было – есть – будет», предполагающих ссылку на «субъективное», постоянно меняющее свое положение «настоящее». С другой стороны, мир без «стрелы времени» неисторичен, он как бы задан сразу, и все события лежат в одной временной плоскости.

К этому спору о допустимости использования в науке временных оценок с изменяющимся истинностным значением имеет прямое отношение и Л. в.
ЛОГИКА ВЫСКАЗЫВАНИЙ, или: Пропозициональная логика, – раздел логики, формализующий употребление логических связок «и», «или», «не», «если, то» и т.п., служащих для образования сложных высказываний из простых. Высказывание называется простым, если оно не включает в себя другие высказывания, в противном случае оно называется сложным. В Л. в. простые высказывания рассматриваются в отвлечении от их внутренней (субъектно-предикатной) структуры. Та или иная истинностная оценка высказывания именуется его истинностным значением.

В логике классической предполагается, что простое высказывание является либо истинным, либо ложным (см.: Двузначности принцип) и что истинностное значение сложного высказывания зависит только от истинностных значений входящих в него простых высказываний и характера их связи.

Так, соединение двух высказываний с помощью связки «и» дает сложное высказывание (именуемое конъюнкцией), являющееся истинным, только когда оба составляющие его высказывания истинны. Сложное высказывание, образованное с помощью связки «или» (дизъюнкция), истинно, если и только если хотя бы одно из двух входящих в него высказываний истинно. Сложное высказывание, образованное с помощью «не» (отрицания), истинно, если только исходное высказывание ложно. Сложное высказывание, полученное из двух высказываний с помощью связки «если, то» (импликация), истинно в трех случаях: оба входящие в него высказывания истинны, оба они ложны, первое из этих высказываний (следующее за словом «если») ложно, а второе (следующее за словом «то») истинно; импликация является ложной только когда первое из составляющих ее высказываний истинно, а второе ложно.

Возможны и другие способы образования сложных высказываний. Всего в классической двузначной логике четыре способа образования сложного высказывания из одного высказывания и шестнадцать способов образования сложного высказывания из двух высказываний.

Язык Л. в. включает бесконечное множество переменных: р, q, r,..., p1, q1, r1, ..., представляющих высказывания, и особые символы для логических связок : & – конъюнкция («и»), v – дизъюнкция («или»),

– отрицание («не» или «неверно, что»), -> – импликация («если, то»). Роль знаков препинания обычного языка играют скобки. Понятие формулы в Л. в. определяется так: отдельная переменная является формулой; если A и В – формулы, то (А&В), (AvB), A и (A->B) также формулы.

Формулам Л. в., образованным из переменных и связок, в естественном языке соответствуют предложения. Напр., если р есть высказывание «Сейчас ночь», q – высказывание «Сейчас темно» и r – высказывание «Сейчас ветрено», то формула (p->(qvr)) представляет высказывание «Если сейчас ночь, то сейчас темно или ветрено», формула ((q&.r)->p) – высказывание «Если сейчас темно и ветрено, то сейчас ночь», формула (q->p) – высказывание: «Если неверно, что сейчас темно, то сейчас не ночь» и т.п. Подставляя вместо переменных другие высказывания, получим другие переводы указанных формул на обычный язык.

Каждой формуле Л. в. можно поставить в соответствие таблицу истинности, указывающую зависимость истинностного значения формулы от истинностных значений входящих в нее переменных. Напр., формула (q->p) принимает значение «ложно» только в случае ложности q и истинности р.

Формула Л. в. называется тождественно-истинной, или тавтологией, если и только если она принимает значение «истинно» при всех распределениях истинностных значений входящих в нее простых высказываний. Формула, принимающая при всех распределениях значение «ложно», называется противоречием. Тавтологии выражают логические законы. К тавтологиям относятся, в частности, формулы:

(р->р) – закон тождества,

(р&р) – закон непротиворечия,

(pvp) – закон исключенного третьего,

(p->q)->(q->p) – закон контрапозиции.

Множество тавтологий бесконечно.

Л. в. может быть представлена также в форме логического исчисления, в котором задается способ доказательства некоторых высказываний (формул), называемых теоремами. Исчисление может быть формализовано с помощью аксиоматического метода. При этом указываются формулы, принимаемые в качестве аксиом, и задаются правила вывода, позволяющие получать из аксиом теоремы. Аксиоматическое исчисление высказываний строится таким образом, чтобы класс теорем совпадал с классом тавтологий, т.е. чтобы каждая теорема была тавтологией и каждая тавтология – теоремой (см.: Полнота). По отношению к аксиоматическому построению встают также вопросы о его непротиворечивости и независимости принятых аксиом и правил вывода.

Наряду с классической Л. в., предполагающей, что всякое высказывание является истинным или ложным, существуют многообразные неклассические Л. в. В числе последних – многозначные Л. в., интуиционистская Л. в. и др.
ЛОГИКА ИЗМЕНЕНИЯ – раздел современной логики, занимающийся исследованием логических связей высказываний об изменении и становлении материальных или идеальных объектов. Л. и. относится к логике неклассической; ее задача – построение искусственных (формализованных) языков, способных сделать более ясными и точными рассуждения об изменении объекта – переходе его от одного состояния к другому, о становлении объекта, его формировании. В Л. и. ничего не говорится о конкретных характеристиках изменения и становления. Она только предоставляет совершенный с точки зрения синтаксиса и семантики язык, позволяющий дать строгие утверждения об изменении объекта, вскрыть основания и следствия этих утверждений, выявить их возможные и невозможные комбинации. Использование искусственного языка при обсуждении проблем изменения объекта не есть подмена этих онтологических проблем логическими, сведение эмпирических свойств и зависимостей к логическим.

Разработка Л. и. идет по двум направлениям: построение специальных Л. и. и истолкование определенных систем логики времени как логических описаний изменений. При первом подходе обычно дается «одномоментная» характеристика изменяющегося объекта, при втором изменение рассматривается как отношение между двумя последовательными состояниями объекта.

К первому направлению относится, в частности, логика направленности. Язык логики направленности богаче, чем язык логики классической; он включает не только термины «существует» и «не существует», но также термины «возникает», «исчезает», «уже есть», «еще есть», «уже нет», «еще нет» и т.п. С помощью этих терминов формулируются законы логики направленности:

  • существовать – это то же, что начинать исчезать, и то же, что переставать возникать;

  • не существовать – то же, что начинать возникать, и то же, что прекращать исчезать;

  • становление – прекращение несуществования, а исчезновение – возникновение несуществования;

  • уже существует – значит существует или возникает и т.п.

Логика направленности допускает четыре типа существования объектов: бытие, небытие, возникновение (становление) и исчезновение. Относительно всякого объекта верно, что он или существует, или не существует, или возникает, или исчезает. Вместе с тем объект не может одновременно существовать и не существовать, существовать и возникать, не существовать и исчезать, возникать и исчезать и т.п. Иными словами, четыре типа существования исчерпывают все возможные способы существования и являются взаимно несовместимыми. Логика направленности позволяет выразить в логически непротиворечивой форме гегелевское утверждение о противоречивости всякого движения и изменения. Утверждение «Предмет движется в данный момент в данном месте» эквивалентно утверждению «В рассматриваемый момент предмет находится и не находится в данном месте».

Примером второго подхода может служить логика времени финского философа и логика Г.X. фон Вригта (р. 1916). Ее исходное выражение «A и в следующей ситуации В» может интерпретироваться как «Состояние А изменяется в состояние В» («А-мир переходит в B-мир»), что дает Л. и. В логике времени доказуемы такие теоремы:

  • всякое состояние либо сохраняется, либо возникает, либо исчезает;

  • при изменении состояние не может одновременно сохраняться и исчезать, сохраняться и возникать, возникать и исчезать;

  • изменение не может начинаться с логически противоречивых состояний и не может вести к таким состояниям и т.п.

Примеры утверждений, доказуемых в различных системах Л. и., показывают, что она не является самостоятельной теорией изменения и не может претендовать на то, чтобы быть таковой. Формально-логический анализ изменения объекта преследует узкую цель – отыскание средств, позволяющих отчетливо зафиксировать логические связи утверждений об изменении того или иного объекта.

Вместе с тем Л. и. имеет важное философское значение, поскольку тема изменения (становления) еще с античности стоит в центре острых философских дискуссий. Л. и. позволяет, кроме прочего, прояснить отношение формальной логики к концепции внутренне противоречивой сущности становления.
ЛОГИКА КЛАССИЧЕСКАЯ – раздел современной (математической, символической) логики, включающий классическую логику высказываний и классическую логику предикатов. Л. к. опирается на двузначности принцип, в соответствии с которым всякое высказывание является или истинным, или ложным.

У истоков Л. к. стоят, наряду со многими другими исследователями, Д. Буль (1815-1864), А. де Морган (1806-1871), Ч. Пирс (1839-1914). В их работах была постепенно реализована идея перенесения в логику тех методов, которые обычно применяются в математике. Последний шаг в математизации логики в прошлом веке был сделан Г. Фреге (1848-1925). Уже в XX веке важный вклад в развитие Л. к. внесли Б. Рассел (1872-1970), А. Уайтхед (1861-1947), Г. Гильберт (1862-1943) и др.

Л. к. ориентировалась главным образом на анализ математических рассуждений. С этим связаны многие ее особенности, нередко расценивающиеся теперь как недостатки. В частности, формальным аналогом условного высказывания в Л. к. является импликация материальная, для которой верны положения: истинное высказывание имплицируется любым высказыванием, ложное высказывание имплицирует каждое высказывание и другие парадоксы импликации.

Критика Л. к. началась в начале XX в. и велась в разных направлениях. Результатом ее явилось возникновение новых разделов современной логики, составляющих в совокупности логику неклассическую. Л. к. остается тем не менее ядром современной логики, сохраняющим свою теоретическую и практическую значимость. Явившись тем образцом, от которого отталкивались разнообразные неклассические системы, Л. к., как правило, оказывается в определенном смысле предельным и притом наиболее простым случаем последних. Многие из них могут быть представлены как расширения Л. к., обогащающие ее выразительные средства.
ЛОГИКА КЛАССОВ – раздел математической логики, соответствующий узкому исчислению одноместных предикатов, которые заменяются объемами, классами. Л. к. соответствует и силлогистике Аристотеля. Иногда Л. к. рассматривается как формализованная теория множеств, в других случаях – как расширение логики высказываний. Если в логике высказываний отвлекаются от связей между субъектом и предикатом высказывания, то в Л. к. эти связи учитываются. В число классов в Л. к. включается и пустой класс (0), содержащий нулевое множество элементов, и универсальный класс (1), включающий все объекты рассматриваемой области. С классами можно производить операции пересечения, объединения и дополнения. К алфавиту логики высказываний в Л. к. добавляются переменные а, b, с, ... для классов; знаки, обозначающие операции с классами; постоянные термы 0 и 1 и знаки для обозначения отношений между классами. Далее дается индуктивное определение терма и класса. Вводятся отношение включения класса в класс (аb) (а включается в класс b), отношение равенства двух классов (а=b). Оба эти отношения могут быть определены через отношение принадлежности элемента классу (аb).

Элементарные формулы в Л. к. имеют вид: иv, u=v, где и и v – термы. Если формула Р является истинной, то это означает, что она истинна для любых классов области, являющихся значениями переменных, входящих в формулу Р. Если она истинна в любых областях, то она тождественно-истинна. Так, формула (a  b  a) гласит, что всякий элемент, содержащийся в обоих классах а и b, содержится и в классе а. Эта формула истинна не только для любых классов а и b данной области D, но и для всяких классов любой области D.

Таблицы истинности, соответствующие возможным значениям для термов (u  v), (u  v), u', (и  v), (u= v), будут совпадать соответственно с таблицами конъюнкции, дизъюнкции, отрицания, импликации, эквивалентности. Четыре Аристотелевы формы элементарных высказываний – общеутвердительного А, частноутвердительного I, общеотрицательного Е, частноотрицательного О (см.: Суждение) – могут быть соответственно выражены так: и  v («Все и суть v»); (и  v') («Некоторые и суть v», т.е. «Неверно, что все и суть не-v»); (иv') («Никакое и не есть v», т.е. «Всякое и есть не -v»); (иv) (Некоторые и не суть v», т.е. «Неверно, что все и суть v»).
ЛОГИКА КОМБИНАТОРНАЯ (от лат. combinare – соединять, сочетать) – одно из направлений в математической логике, занимающееся анализом понятий, которые в рамках классической математической логики принимаются без дальнейшего изучения (напр., понятия «переменная», «функция», «правила подстановки» и т.д.). В классической математической логике пользуются правилами двух родов. Первые формулируются просто и используются без всяких ограничений. Таково, напр., правило модус поненс. Оно формули­руется так: если даны предложения «Если A, то B» и «A», то из них может быть выведено предложение «B». Это правило доступно для одноактного автоматического выполнения. Другие правила (напр., правило подстановки) формулируются сложно и предполагают ряд ограничений и оговорок. Одной из задач Л. к. является создание таких формальных систем, где не будет встречаться правил, подобных правилу подстановки.
ЛОГИКА НАУЧНОГО ПОЗНАНИЯ, или: Логика науки, – применение идей, методов и аппарата логики в анализе научного познания. Развитие логики всегда было тесно связано с практикой теоретического мышления и прежде всего с развитием науки. Конкретные рассуждения дают логике материал, из которого она извлекает то, что именуется логической формой, законом и т.д. Теории логической правильности оказываются в конечном счете очищением, систематизацией и обобщением практики мышления.

Современная логика с особой наглядностью подтверждает это. Она активно реагирует на изменения в стиле и способе научного мышления, на осмысление его особенностей в методологии науки. Сфера приложений логики в изучении систем научного знания непрерывно расширяется. В конце XIX – начале XX в. логика почти всецело ориентировалась на исследование математического рассуждения, и эта связь с математикой была настолько тесной, что до сих пор в имени «математическая логика» прилагательное «математическая» иногда истолковывается как указывающее не только на своеобразие методов новой логики, но и на сам ее предмет. В 20-е годы XX века предмет логических исследований научного знания существенно расширился. Начали складываться такие разделы логики, как многозначная логика, модальная логика, теория логического следования, деонтическая логика и др. Были предприняты попытки систематического построения индуктивной логики. Все эти новые разделы не были непосредственно связаны с математикой, в сферу логического исследования вовлекалось уже естественнонаучное и гуманитарное знание.

В 30-40-е годы XX века Л. н. п. интенсивно разрабатывалась в рамках философии неопозитивизма, сделавшей логический анализ языка науки основным средством борьбы с «дурной метафизикой» и порождаемыми ею «псевдопроблемами». Неопозитивизм принял идею о безоговорочной применимости математической (современной) логики не только к дедуктивным наукам, но и к опытному знанию и резко противопоставил свою «логику науки» традиционному философскому и методологическому анализу познания. Претенциозная неопозитивистская программа сведения философии науки к логическому анализу ее языка потерпела крах. Причина его не в принципиальной неприменимости современной логики к опытному знанию, а в порочных философско-методологических установках, связанных с фетишизацией формальных аспектов познания, абсолютизацией языка и формальной логикой. Особенности неопозитивистской методологии – изоляционизм, отказ от исследования научного знания в динамике, наивный индуктивизм, эмпирический фундаментализм и редукционизм – фатальным образом сказались не только на самой этой методологии, но и на направляемом ею логическом анализе научного знания. Неудачными оказались, в частности, попытки чисто формальными средствами охарактеризовать индукцию, определить понятие естественнонаучного закона, диспозиционного предиката, объяснения, контрфактического высказывания, осуществить сведение теоретических терминов к эмпирическим и др. Неопозитивистское расширительное истолкование возможностей Л. н. п. было преодолено только в конце 50-х – начале 60-х годов, когда стало очевидно, что задачи, которые выдвигались перед нею неопозитивизмом, плохо поставлены и не имеют решения. Борьба неопозитивизма против «псевдопроблем» традиционной философии и теории познания во многом вылилась в бесплодные дискуссии по поводу псевдопроблем самой неопозитивистской логики науки.

Сейчас логический анализ научного знания активно ведется в целом ряде как давно освоенных, так и новых областей. Самым общим образом их можно обозначить так:
1   ...   5   6   7   8   9   10   11   12   ...   24


написать администратору сайта