Главная страница
Навигация по странице:

  • Случайные события Теория вероятностей - математическая наука, изучающая закономерности в случайных явлениях.Определение 1.

  • Примеры случайных явлений.

  • Определение 2.

  • Примеры случайных событий.

  • Определение 3.

  • Вероятность и статистика. 7-А(06.03 Вер и стат). Случайный опыт и случайное событие. Вероятность и частота события


    Скачать 18.21 Kb.
    НазваниеСлучайный опыт и случайное событие. Вероятность и частота события
    АнкорВероятность и статистика
    Дата05.03.2023
    Размер18.21 Kb.
    Формат файлаdocx
    Имя файла7-А(06.03 Вер и стат).docx
    ТипДокументы
    #969987

    Тема: Случайный опыт и случайное событие. Вероятность и частота события.

    Случайные события:

    В естественных науках познание действительности происходит в результате испытаний (экспериментов) или наблюдений, т. е. опыта в широком понимании слова. Под испытанием (наблюдением), в общем смысле, подразумевается наличие определенного комплекса условий. Возможный результат — исход испытания или наблюдения — называется событием, независимо от его значимости.

    При построении теории события идеализируются, т. е. игнорируются ситуации, несущественные для данного явления.

    Пример:

    При бросании монеты может выпасть герб или решетка (обратная сторона). Таким образом, при однократном испытании возможны два события: А — выпадение герба, Б — выпадение решетки.

    Однако возможно еще одно событие С — когда монета станет на ребро. Но при организации игры в «орлянку» это обстоятельство несущественно (монета перебрасывается!) и в нашем идеализированном опыте это событие не учитывается.

    Определение 1. Результат испытания, который нельзя заранее прогнозировать у называется случайным с опыте.

    Иными словами, событие является случайным в данном опыте, если заранее нельзя предсказать, произойдет оно или не произойдет в этом опыте.

    Например, случайным событием является выпадение герба при бросании монеты. Конечно, предполагается, что испытание организовано так, что исход его заранее не известен.

    Во многих случаях случайное событие есть результат неполной информации о данном явлении, Например, в опыте с бросанием монеты, если нам были бы известны сила толчка, форма монеты, закон сопротивления воздуха и другие факторы, определяющие закон движения монеты, мы смогли бы точно предсказать исход испытания.

    Определение 2. Событие называется достоверным в данном испытании (т. е. при осуществлении определенной совокупности условий), если оно неизбежно происходит при этом испытании.

    Например, получение студентом положительной или отрицательной оценки на экзамене есть событие достоверное, если экзамен протекает согласно обычным правилам.

    Определение 3. Событие называется невозможным в данном испытании, если оно заведомо не происходит в этом испытании.

    Например, если в урне находятся лишь цветные (небелые) шары, то извлечение из этой урны белого шара есть событие невозможное. Отметим, что при других условиях опыта появление белого шара не исключается; таким образом, это событие невозможно лишь в условиях нашего опыта.

    Теория вероятностей есть наука, изучающая закономерности случайных событий.

    В связи с развитием новой техники особый интерес представляют статистические закономерности массовых однородных случайных событий (контроль качества продукции, обслуживание серийного производства, работа телефонной станции и т. п.). Здесь в различных вариантах установлена основная теорема теории вероятностей — закон больших чисел.

    Примем как аксиому, что для каждого события А можно определить, по крайней мере теоретически, вероятность этого события — число Р(А), представляющее, в некотором смысле, меру достоверности данного события и подчиненное естественным требованиям. Предполагается, что вероятность любого события удовлетворяет неравенству



    причем вероятность невозможного события равна нулю, а вероятность достоверного события равна единице.

    На практике считают, что если вероятность события мала, то это событие практически невозможно; наоборот, если вероятность события близка к единице, то это событие почти достоверно; и сообразно этому принимают обоснованные решения.

    В создании теории вероятностей участвовали многие крупные математики (Паскаль, Ферма, Лаплас, Гаусс, Пуассон и др.). В более поздний период решающие успехи в этой науке принадлежат отечественным математикам (Чебышев, Марков, Ляпунов, Бернштейн, Колмогоров, Хинчин и др.).

    Теория вероятностей широко используется в теоретических и прикладных науках (в физике, геодезии, в теории стрельбы, в теории автоматического управления и многих других). В частности, она служит теоретической базой математической и прикладной статистики, на основе которых происходит планирование и организация производства.

    Случайные события

    Теория вероятностей - математическая наука, изучающая закономерности в случайных явлениях.

    Определение 1. Случайное явление - это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по-иному.

    Примеры случайных явлений.

    1) Вес тела, узнаваемый с помощью весов (одно и то же тело взвешивают на одних и тех же весах несколько раз). Результаты различны вследствие влияния второстепенных факторов: положение тела на чаше весов, вибрации аппаратуры, ошибки отсчета показаний прибора...

    2) Попадание в цель бомбы, сброшенной с самолета (сброс несколько раз с одного положения в одну и ту же цель). Результаты различны вследствие влияния второстепенных факторов: сила ветра, человеческий фактор...

    Из примеров видно, что случайные явления неопределенны и многопричинны. Основные условия опыта - неизменны, а второстепенные изменяются от опыта к опыту и вносят случайные различия в результаты.

    В классической схеме исследования (математике, физике, механике, технике) этими случайными элементами пренебрегают, рассматривая вместо реального события его упрощенную «модель». Но существуют задачи, в которых второстепенные факторы играют заметную роль (например, точечное попадание в цель). Для решения таких задач существуют вероятностные или статистические методы исследования, базой которых служит устойчивость массовых случайных явлений. Действительно, если наблюдать в совокупности массы однородных случайных явлений (чем больше - тем лучше), то обнаруживается закономерность, устойчивость, свойственная именно массовым случайным явлениям.

    Эти методы являются дополнением к классическим.

    Определение 2. Любой наблюдаемый результат опыта, то есть всякий факт, который в результате опыта может произойти или не произойти, называется случайным событием или случайным исходом.

    Обозначение: А = {...}.

    Примеры случайных событий. 1) Опыт состоит в бросании монеты. Событие А = {появление орла}. 2) Событие В = {обрыв нити в течение часа работы швейной машины}. 3) Событие С = {попадание в цель при выстреле}.

    Определение 3. Предметом теории вероятностей являются модели неоднократно повторяемых при неизменном комплексе условий экспериментов со случайными исходами.


    написать администратору сайта