Содержание 14. А
Скачать 3.72 Mb.
|
Развитие половых клеток.Развитие половых клеток называется прогенезом, или гаметогенезом, и происходит в половых железах. Суть гаметогенеза состоит в образовании из диплоидных стволовых предшественников половых клеток высокодифференцированных клеток (сперматозоидов и яйцеклеток) с гаплоидным набором хромосом. Развитие мужских половых клеток — сперматогенез, включает четыре фазы: размножения, роста, созревания, формирования. В результате сперматогенеза возникают клетки сперматозоиды (спермин), содержащие Х- или Y-половую хромосому. Развитие женских половых клеток — овогенез, состоит из трех фаз: размножения, роста, созревания. В результате овогенеза образуются яйцеклетки (овоциты), содержащие Х-половую хромосому. В основном мужской и женский гаметогенезы протекают однотипно. В фазе размножения исходные половые клетки (сперматогонии — в сперматогенезе и овогонии — в овогенезе) в ходе клеточного цикла синтезируют ДНК и митотически делятся; их размножение протекает на основе общих закономерностей, характерных и для соматических клеток. В процессе сперматогенеза делится только часть сперматогонии, так называемые светлые сперматогонии типа А, которые являются полустволовыми клетками, дающими начало сперматогониям типа В. Сперматогонии типа В проходят несколько митотических циклов, при этом не происходит полной цитотомии сперматогонии и они остаются связанными цитоплазматическими мостиками. Фаза размножения сперматогонии контролируется естественными митогенами — гормоном аденогипофиза фоллитропином и интерлейкином-1, вырабатываемым клетками Сертоли и клетками Лейдига (интерстициальными эндокриноцитами) яичек. 92.Оплодотворение, его формы и биологическая функция. Моно- и полиспермия. Половой процесс, или оплодотворение, или амфимиксис (др.-греч. ἀμφι- — приставка со значением обоюдности, двойственности и μῖξις — смешение) — процесс слияния гаплоидных половых клеток, или гамет, приводящий к образованию диплоидной клетки зиготы. Не следует смешивать это понятие с половым актом (встречей половых партнёров у многоклеточных животных). Половой процесс закономерно встречается в жизненном цикле всех организмов, у которых отмечен мейоз. Мейоз приводит к уменьшению числа хромосом в два раза (переход от диплоидного состояния к гаплоидному), половой процесс — к восстановлению числа хромосом (переход от гаплоидного состояния к диплоидному). Различают несколько форм полового процесса:
Биологическое значение амфимиксиса непосредственно связано с биологической сущностью определенных сторон процесса оплодотворения. Дарвин, открывший «великий закон природы», говорил о прогрессивном значении появления полового процесса в истории органического мира, рассматривая при этом перекрёстное опыление как источник обогащения наследственности. Благодаря бипариентальному наследованию (материнское — от яйцеклетки и отцовское — от спермия) в результате амфимиксиса получаются более жизнеспособные организмы, обладающие более широким спектром изменчивости по сравнению с апомиктичными растениями. 93.Морфологические и функциональные особенности зрелых гамет млекопитающих и человека. Гамета (gamete): зародышевая клетка (спермий или яйцеклетка), содержащая гаплоидный набор хромосом , то есть имеющая по одному экземпляру каждой из хромосом. При половом способе размножения потомство, как правило, имеет двух родителей. Каждый из родителей производит половые клетки. Половые клетки, или гаметы, обладают половинным или гаплоидным набором хромосом и возникают в результате мейоза . Таким образом, гамета (от греч. gamete - жена, gametes - муж) - зрелая репродуктивная клетка, содержащая гаплоидный набор хромосом и способная при слиянии с аналогичной клеткой противоположного пола образовать зиготу , при этом число хромосом становится диплоидным. В диплоидном наборе каждая хромосома имеет себе парную (гомологичную) хромосому. Одна из гомологичных хромосом происходит от отца, другая - от матери.. Женская гамета называется яйцеклеткой , мужская - сперматозоидом. Процесс образования гамет носит общее название - гаметогенез. Всем животным свойственна оогамия - наличие крупных неподвижных яйцеклеток и мелких, обычно обладающих подвижностью сперматозоидов. Многие животные раздельнополы, остальные являются обоеполыми, или гермафродитами . У гермафродитных видов одни и те же особи образуют и яйцеклетки, и сперматозоиды. У раздельнополых животных самки производят яйцеклетки, самцы - сперматозоиды. Гермафродитами являются большинство плоских червей , малощетинковые кольчатые черви , большинство брюхоногих моллюсков. Раздельнополость характерна для большинства членистоногих и позвоночных. У раздельнополых животных и человека гермафродитизм иногда встречается как результат нарушений развития особи. Половые клетки у таких многоклеточных, как губки или турбеллярии, могут возникать в любом участке тела. У большинства же организмов они образуются в специальных органах: у животных это гонады (греч. gone - семя), или половые железы, у растений - спорангии , у грибов - гаметангии . У некоторых организмов будущие половые клетки закладываются на самых ранних этапах дробления. Например, у аскариды уже на стадии 16 бластомеров выделяется половой зачаток, из которого впоследствии возникнут половые клетки. Ряд клеточных поколений от первичных половых клеток до гамет получил название зародышевого пути. У эмбрионов всех позвоночных на ранней стадии развития определенные клетки обособляются как предшественники будущих гамет. Такие первичные половые клетки мигрируют в развивающиеся гонады ( яичники у самок, семенник и у самцов), где после периода митотического размножения претерпевают мейоз и дифференцируются в зрелые гаметы. В половых клетках перед мейозом активируются дополнительные гены, которые регулируют спаривание гомологичных хромосом, рекомбинацию и разделение рекомбинированных гомологичных хромосом в анафазе первого деления. Яйцеклетки развиваются из первичных половых клеток , которые на ранней стадии развития организма мигрируют в яичник и превращаются там в оогонии . После периода митотического размножения оогонии становятся ооцитами первого порядка , которые, вступив в первое деление мейоза , задерживаются в профазе I на время, измеряемое сутками или годами в зависимости от вида организма. В период этой задержки ооцит растет и накапливает рибосомы, мРНК и белки, зачастую используя при этом другие клетки, включая окружающие вспомогательные клетки. Дальнейшее развитие (созревание яйцеклетки) зависит от полипептидных гормонов ( гонадотропинов ), которые, воздействуя на окружающие каждый ооцит вспомогательные клетки, побуждают их индуцировать созревание небольшой части ооцитов. Эти ооциты завершают первое деление мейоза, образуя маленькое полярное тельце и крупный ооцит второго порядка , который позже переходит в метафазу второго деления мейоза . У многих видов ооцит задерживается на этой стадии до тех пор, пока оплодотворение не инициирует завершение мейоза и начало развития эмбриона. Спермий обычно представляет собой маленькую и компактную клетку, которая в высокой степени специализирована для функции внесения своей ДНК в яйцеклетку. В то время как у многих организмов весь пул ооцитов образуется еще на ранней стадии развития самки, у самцов после наступления половой зрелости в мейоз вступают все новые и новые половые клетки, причем каждый сперматоцит первого порядка дает начало четырем зрелым спермиям. Дифференцировка спермиев осуществляется после мейоза, когда ядра гаплоидны. Однако, поскольку при митотическом делении зрелых сперматогониев и сперматоцитов цитокинез не доводится до конца, потомки одного сперматогония развиваются в виде синцития . В связи с этим дифференцировка спермия может контролироваться продуктами хромосом от обоих родителей. = 2 = 1.Общие св-ва и уровни организации генетического аппарата (геном, генотип, кариотип). Гено́м — совокупность всех генов организма; его полный хромосомный набор. Термин «геном» был предложен Гансом Винклером в 1920 г. для описания совокупности генов, заключённых в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и РНК. Генетическая информация в клетках содержится не только в хромосомах ядра, но и во внехромосомных молекулах ДНК. У бактерий к таким ДНК относятся плазмиды и некоторые умеренные вирусы, в клетках эукариот — это ДНК митохондрий, хлоропластов и других органоидов клеток. Объёмы генетической информации, заключённой в клетках зародышевой линии (предшественники половых клеток и сами гаметы) и соматических клетках, в ряде случаев существенно различаются. В онтогенезе соматические клетки могут утрачивать часть генетической информации клеток зародышевой линии, амплифицировать группы последовательностей и (или) значительно перестраивать исходные гены. Следовательно, под геномом организма понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма. В определении генома отдельного биологического вида необходимо учитывать, во-первых, генетические различия, связанные с полом организма, поскольку мужские и женские половые хромосомы различаются. Во-вторых, из-за громадного числа аллельных вариантов генов и сопутствующих последовательностей, которые присутствуют в генофонде больших популяций, можно говорить лишь о некоем усреднённом геноме, который сам по себе может обладать существенными отличиями от геномов отдельных особей. Размеры геномов организмов разных видов значительно отличаются друг от друга, и при этом часто не наблюдается корреляции между уровнем эволюционной сложности биологического вида и размером его генома. Геноти́п — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма. Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям: 1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма). 2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарност Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы). Внешний вид хромосом существенно меняется в течение клеточного цикла: в течение интерфазы хромосомы локализованы в ядре, как правило, деспирализованы и труднодоступны для наблюдения, поэтому для определения кариотипа используются клетки в одной из стадий их деления — метафазе митоза. 2.Ген – функциональная единица наследственности. Эволюция представлений о гене. Ген — структурная и функциональная единица наследственности, контролирующая развитие определенного признака или свойства. Совокупность генов родители передают потомкам во время размножения. В настоящее время, в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма. В то же время, каждый ген характеризуется рядом специфических регуляторных последовательностей ДНК, таких как промоторы, которые принимают непосредственное участие в регулировании проявления гена. Регуляторные последовательности могут находиться как в непосредственной близости от открытой рамки считывания, кодирующей белок, или начала последовательности РНК, как в случае с промоторами (так называемые cis-регуляторные элементы, англ. cis-regulatory elements), так и на расстоянии многих миллионов пар оснований (нуклеотидов), как в случае с энхансерами, инсуляторами и супрессорами (иногда классифицируемые как trans-регуляторные элементы, англ. trans-regulatory elements). Таким образом, понятие гена не ограничено только кодирующим участком ДНК, а представляет собой более широкую концепцию, включающую в себя и регуляторные последовательности. Изначально термин ген появился как теоретическая единица передачи дискретной наследственной информации. История биологии помнит споры о том, какие молекулы могут являться носителями наследственной информации. Большинство исследователей считали, что такими носителями могут быть только белки, так как их строение (20 аминокислот) позволяет создать больше вариантов, чем строение ДНК, которое составлено всего из четырёх видов нуклеотидов. Позже было экспериментально доказано, что именно ДНК включает в себя наследственную информацию, что было выражено в виде центральной догмы молекулярной биологии. Гены могут подвергаться мутациям — случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК. Мутации могут приводить к изменению последовательности, а следовательно изменению биологических характеристик белка или РНК, которые, в свою очередь, могут иметь результатом общее или локальное изменённое или анормальное функционирование организма. Такие мутации в ряде случаев являются патогенными, так как их результатом является заболевание, или летальными на эмбриональном уровне. Однако, далеко не все изменения последовательности нуклеотидов приводят к изменению структуры белка (благодаря эффекту вырожденности генетического кода) или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется однонуклеотидными полиморфизмами и вариациями числа копий (англ. copy number variations), такими как делеции и дупликации, которые составляют около 1 % всей нуклеотидной последовательности человека.[1] Однонуклеотидные полиморфизмы, в частности, определяют различные аллели одного гена. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие в себя азотистые основания: аденин(А) или тимин(Т) или цитозин(Ц) или гуанин(Г), пятиатомный сахар-пентозу-дезоксирибозу,по имени которой и получила название сама ДНК, а так же остаток фосфорной кислоты.Эти соединения носят название нуклеотидов.
3.Особенности генома эукариот. Количественные особенности генома эукариот Главная количественная особенность генетического материала эукариот – наличие избыточной ДНК. Этот факт легко выявляется при анализе отношения числа генов к количеству ДНК в геноме бактерий и млекопитающих. Если средний размер гена бактерий 1500 пар нуклеотидов (п.н.), а длина кольцевой молекулы ДНК хромосомы Е. coliи В. subtilis составляет свыше 1 мм, то в такой хромосоме могут разместиться около 3 тысяч генов. Примерно такое число генов было экспериментально определено у бактерий по числу типов иРНК. Если это число умножить на средний размер гена, то получится, что около 95% генома бактерий состоит из кодирующих (генных) последовательностей. Остальные 5%, по-видимому, заняты регуляторными элементами. Иная картина наблюдается у эукариотических организмов. Например, у человека насчитывают приблизительно 50 тысяч генов (имеется в виду только суммарная длина кодирующих участков ДНК – экзонов). В то же время размер генома человека 3×109 (три миллиарда) п.н. Это означает, что кодирующая часть его генома составляет всего 15…20 % от тотальной ДНК. Существует значительное число видов, геном которых в десятки раз больше генома человека, например некоторые рыбы, хвостатые амфибии, лилейные. Избыточная ДНК характерна для всех эукариот. В этой связи необходимо подчеркнуть неоднозначность терминов генотип и геном. Под генотипом следует понимать совокупность генов, имеющих фенотипическое проявление, тогда как понятие генома обозначает количество ДНК, находящееся в гаплоидном наборе хромосом данного вида 4.История изучения структуры гена. Современное представление о структуре гена, его функционировании, регуляции его активности складывалось во второй половине XX века. Важными вехами на этом пути стали; • открытие двухспиральной структуры ДНК; • выделение РНК и выяснение ее роли в передаче наследственной информации от ДНК к РНК и белку; • расшифровка генетического кода. В 1961 г. М. Ниренберг и Дж. Матеи открыли кодирующие свойства синтетических полирибонуклеотидов в бесклеточных системах трансляции. Было показано, что UUU кодирует фенилаланин, AAA —лизин, ССС - пролин. В 1964 г. генетический код был расшифрован полностью. Стало очевидно, что ген представляет собой определенную последовательность нуклеотидов в молекуле ДНК. При этом каждые три основания в цепи ДНК кодируют одну аминокислоту в соответствующих полипептидных цепях, В отличие от генов, кодирующих белки, процесс считывания информации с генов рибосомной РНК (рРНК) и транспортной РНК (тРНК) заканчивается на их транскрипции. С 1966 г. методом гибридизации ДНК с радиоактивно меченной РНК изучалась локализация генов рРНК у ряда объектов. Оказалось, что локусы рибосомных генов 18S и 28S чаще расположены в гетерохроматиновых прицентромерной и теломерной областях хромосом, У человека рибосомные гены картируются в коротких плечах акроцентрических хромосом. Гены JS-pPHK, как правило, выявляются в различных хромосомах и вне ядрышкового организатора. Во второй половине 70-х гг. появились данные о локализации генов тРН К у Е. coli, дрожжей, Xenopus laevis, Drosophita melanogaster. Гены, кодирующие рибосомную и транспортную РНК были отнесены к генам «домашнего хозяйства», поскольку работают в каждой клетке и необходимы для поддержания ее жизнеспособности. Однако в отличие от генов рРНК, гены тРН К диспергированы по геному. Бурное развитие молекулярной биологии, появление новых методов и приборов, в частности секвенаторов, сделало возможным изучение структуры генов у эукаритов. Первыми в конце 70-х гг. были расшифрованы нуклеотидные последовательности глобиновых генов человека. Оказалось, что эукариотические гены устроены сложнее, чем гены прокариотов. Они имеют мозаичную структуру и состоят из кодирующих участков - экзонов и расположенных между ними некодируюших областей - нитронов. При транскрипции ДНК считывается целиком, а затем образовавшаяся пре-мРНК подвергается созреванию (процессингу); участки РНК транскрибированные с интронов, вырезаются, а участки РНК, ситезированные на экзонах, сшиваются (сплайсинг), Наряду с последовательным вырезанием интронов, существует eute и альтернативный сплайсинг, в результате которого экзоны одного гена соединяются в разных комбинациях с образованием различных зрелых мРНК. Это явление в корне изменило представление о гене, как единице наследственности, кодирующей только одггу полипептид>гую цепь. Вот почему в современной генетической литературе нет единого общепринятого определения термина «ген». Так, в основу одних определений положена структурная организация гена, других — функция в организме, в третьих определениях - ген рассматривается как единица в процессе транскрипции, а четвертых — к перечисленным функциям добавляется возможность транскрипции с одного гена нескольких вариантов мРН К. Мы предлагаем расширенное определение термина «ген» с учетом его структурных и функциональных особенностей. Структурный ген — это участок ДИК или РНК (у некоторых вирусов), определяющий линейную последовательность полипептидной цепи или одной молекулы тРНК или рРНК. За счет разных рамок считывания, альтернативного сплайсинга и различных промоторов с одного гена могут быть транскрибированы несколько мРНК, выполняющих сходные иди различные функции. 5.Сравнительная хар-ка геномов прокариот и эукариот. Если сравнивать между собой прокариотические и эукариотические клетки, то можно выявить множество различий, демонстрирующих примитивность первых по отношению ко вторым. Наследственный материал содержится в клетке-прокариоте в виде одинарной ДНК, скрученной в кольцо. В отличие от эукариот, данная бактериальная хромосома не отделяется от окружающей цитоплазмы никакой оболочкой. Этот компактный клубок ДНК в цитоплазме прокариота называется нуклеоид. У прокариотов отсутствуют большинство органелл, наличествующих в более совершенной эукариотической клетке. То есть, мы можем обобщить информацию о наследственном материале и других структурах прокариот, сказав, что они не организованы в отдельные образования, имеющие собственные оболочки, отделенные от цитоплазмы, а свободно располагаются в жидком содержимом клетки. Накопленные и выводимые вещества, содержатся в цитоплазме в виде капель. Синтез энергии осуществляется разрастаниями мембраны. У прокариот могут быть органы движения – жгутики, но они, как и следовало ожидать, намного примитивнее по строению, чем аналогичные структуры у ядерных клеток. Зато, прокариоты лучше приспособлены к агрессивным условиям окружающей среды – они имеют дополнительную плотную оболочку, так называемую, капсулу или чехол, предохраняющую клетку от воздействия химических веществ, излучений, повышенного давления и экстремальных температур. 6.Регуляция экспрессии генов у эукариот. Одно из самых важных свойств гена - способность к экспрессии. Последовательности ДНК, расположенные перед началом структурного гена и определяющие степень активности РНК-полимеразы, называются регуляторными последовательностями. Одна из таких последовательностей представляет собой участок ДНК, с которым связывается РНК-полимераза. Этот участок называется промотором. Последовательность оснований промотора определяет частоту инициации синтеза иРНК, причем замена одного основания в этой последовательности может привести к уменьшению частоты инициации в 1000 раз. Промотор может быть сильным и слабым. Сильный промотор инициирует синтез иРНК часто, слабый - гораздо реже. С другой стороны, промотор может быть регулируемым и нерегулируемым. Например, промотор β-лактамазы нерегулируемый, но сильный. Использование таких промоторов не всегда удобно. Дело в том, что большое количество белка может блокировать рост бактерий. Кроме того, интенсивная транскрипция рекомбинантной ДНК может помешать репликации плазмиды, и она будет утрачена. Поэтому удобнее использовать регулируемые сильные промоторы (индуцибельные), включение которых, а значит и синтез чужеродного белка можно осуществить, когда получена большая бактериальная масса. Некоторые плазмидные векторы содержат промотор, работа которого регулируется температурочувствительным белковым продуктом гена-репрессора. Белок-репрессор активен при определенных температурах и блокирует действие промотора. Повысив температуру до 42 оС, можно "включить" промотор и быстро получить большое количество требуемого белка. В качестве индуцибельных промоторов используют также Trp-промотор триптофанового оперона, который регулируется триптофановым голоданием, lac-промотор лактазного оперона, который индуцируется субстратом (лактозой) и другие. Интенсивность транскрипции определенных структурных генов может зависеть от эффективности ее терминации, в частности, от того, как часто РНК-полимераза прекращает синтез РНК, не дойдя до этих генов. Сравнительно недавно обнаружено, что во многих оперонах Е.coli, контролирующих биосинтез аминокислот, между промотором и первым структурным геном имеется терминирующая последовательность. В определенных условиях происходит образование терминирующего сигнала, ослабляющего интенсивность транскрипции. Это явление получило название аттенуации, а участок ДНК - аттенуатор (ослабитель). Как и репрессия, аттенуация зависит от присутствия в среде соответствующих аминокислот. Например, избыток триптофана в клетках триптофанзависимых мутантов, дефектных по репрессору, только 1 из 10 молекул РНК-полимеразы, начавших транскрипцию, преодолевает аттенуатор и считывает структуру генов. Удаление триптофана втрое повышает эффективность транскрипции генов. В отличие от репрессии, антенуация зависит не от самой аминокислоты, а от триптофанил - тРНК (аминокилоты, присоединенной к соответствующей тРНК). На эффективность продуктивности рекомбинантной ДНК в существенной степени влияет количество копий этой ДНК в расчете на клетку. Суммарная активность экспрессируемого гена растет с ростом копийности плазмиды. Таким образом, используя многокопийные плазмиды, можно достичь сверхсинтеза нужных белковых продуктов. Обычно используемые плазмидные векторы (pBR 322 и др.) поддерживаются в клетке в количестве 20-50 копий. Сейчас исследователи имеют в своем распоряжении температурно-чувствительные мутантные плазмиды, способные накопить до одной-двух тысяч копий на клетку, не нарушая ее жизненно-важных функций. Таким образом можно достичь сверхпродукции плазмидных генов бактериальными штаммами-сверхпродуцентами. Регуляция экспрессии у E. coli происходит также и на уровне трансляции. Последовательность оснований длиной 6-8 нуклеотидов, расположенная непосредственно перед инициирующим кодоном АУГ, определяет эффективность трансляции. Эта последовательность представляет собой участок связывания мРНК с рибосомой. Как правило, он отстоит на 8 нуклеотидов от инициирующего кодона, и его сдвиг в ту или иную сторону может резко снижать эффективность трансляции соответствующей мРНК. Описанный участок называется последовательностью Шайна-Дальгарно, по имени исследователей, впервые его идентифицировавших. В состав вектора кроме всего прочего должен входить маркерный ген, позволяющий селектировать измененные клетки. Часто в качестве селективных используют широко распространенные в природе гены ферментов, модифицирующих антибиотики и инактивирующие их действие. 7.Регуляция экспрессии генов у прокариот. Исследования на клетках Е. coli позволили установить, что у бактерий существуют ферменты 3 типов:
1. Теория оперона В экспериментах гипотеза оперона получила полное подтверждение, а предложенный в ней тип регуляции стали называть контролем синтеза белка на уровне транскрипции, так как в этом случае изменение скорости синтеза белков осуществляется за счёт изменения скорости транскрипции генов, т.е. на стадии образования мРНК. У Е. coli, как и у других прокариотов, ДНК не отделена от цитоплазмы ядерной оболочкой. В процессе транскрипции образуются первичные транскрипты, не содержащие нитронов, а мРНК лишены "кэпа" и поли-А-конца. Синтез белка начинается до того, как заканчивается синтез его матрицы, т.е. транскрипция и трансляция протекают почти одновременно. Исходя из размера генома (4×106 пар нуклеотидов), каждая клетка Е. coli содержит информацию о нескольких тысячах белков. Но при нормальных условиях роста она синтезирует около 600-800 различных белков, а это означает, что многие гены не транскрибируются, т.е. неактивны. Гены белков, функции которых в метаболических процессах тесно связаны, часто в геноме группируются вместе в структурные единицы (опероны). Согласно теории Жакоба и Моно, оперонами называют участки молекулы ДНК, которые содержат информацию о группе функционально взаимосвязанных структурных белков, и регуляторную зону, контролирующую транскрипцию этих генов. Структурные гены оперона экспрессируются согласованно, либо все они транскрибируются, и тогда оперон активен, либо ни один из генов не "прочитывается", и тогда оперон неактивен. Когда оперон активен и все его гены транскрибируются, то синтезируется полицистронная мРНК, служащая матрицей для синтеза всех белков этого оперона. Транскрипция структурных генов зависит от способности РНК-полимеразы присоединяться к промотору, расположенному на 5'-конце оперона перед структурными генами. Связывание РНК-полимеразы с промотором зависит от присутствия белка-репрессора на смежном с промотором участке, который называют "оператор". Белок-репрессор синтезируется в клетке с постоянной скоростью и имеет сродство к операторному участку. Структурно участки промотора и оператора частично перекрываются, поэтому присоединение белка-репрессора к оператору создаёт стерическое препятствие для присоединения РНК-полимеразы. Большинство механизмов регуляции синтеза белков направлено на изменение скорости связывания РНК-полимеразы с промотором, влияя таким образом на этап инициации транскрипции. Гены, осуществляющие синтез регуяятор-ных' белков, могут быть удалены от оперона, транскрипцию которого они контролируют. 8.Международная программа (геном человека). Проект по расшифровке генома человека (англ. The Human Genome Project, HGP) — международный научно-исследовательский проект, главной целью которого было определить последовательность нуклеотидов, которые составляют ДНК и идентифицировать 20–25 тыс. генов в человеческом геноме. Проект начался в 1990 году, под руководством Джеймса Уотсона под эгидой Национальной организации здравоохранения США (англ.). В 2000 году был выпущен рабочий черновик структуры генома, полный геном — в 2003 году, однако и сегодня дополнительный анализ некоторых участков ещё не закончен. Частной компанией «Celera Genomics (англ.)» был запущен аналогичный параллельный проект, завершённый несколько ранее международного. Основной объём секвенирования был выполнен в университетах и исследовательских центрах США, Канады и Великобритании. Кроме очевидной фундаментальной значимости, определение структуры человеческих генов является важным шагом для разработки новых медикаментов и развития других аспектов здравоохранения. Хотя целью проекта по расшифровке генома человека является понимание строения генома человеческого вида, проект также фокусировался и на нескольких других организмах, среди которых бактерии, в частности, Escherichia coli, насекомые, такие как мушка дрозофила, и млекопитающие, например, мышь. Изначально планировалось определение последовательности более трёх миллиардов нуклеотидов, содержащихся в гаплоидном человеческом геноме. Затем несколько групп объявили о попытке расширить задачу до секвенирования диплоидного генома человека, среди них международный проект HapMap (англ.), «Applied Biosystems», «Perlegen», «Illumina», «JCVI», «Personal Genome Project» и «Roche-454». Геном любого отдельно взятого организма (исключая однояйцевых близнецов и клонированных животных) уникален, поэтому определение последовательности человеческого генома в принципе должно включать в себя и секвенирование многочисленных вариаций каждого гена. Однако, в задачи проекта «Геном человека» не входило определение последовательности всей ДНК, находящейся в человеческих клетках; а некоторые гетерохроматиновые области (в общей сложности около 8 %) остаются несеквенированными до сих пор. |