Главная страница

Рациональное использование природных ресурсов. Содержание 1анализ и тенденции развития литья теплоэнергетического оборудования 5


Скачать 1.71 Mb.
НазваниеСодержание 1анализ и тенденции развития литья теплоэнергетического оборудования 5
АнкорРациональное использование природных ресурсов
Дата26.09.2022
Размер1.71 Mb.
Формат файлаdoc
Имя файлаDIPLOM.doc
ТипРеферат
#698063
страница17 из 21
1   ...   13   14   15   16   17   18   19   20   21

8ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ

8.1ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ РАЗМЕРОВ ОБРАЗЦА ДЛЯ ИСПЫТАНИЙ НА ГЕРМЕТИЧНОСТЬ


Для испытания образцов на герметичность необходимо стремиться к сокращению времени, затрачиваемого на проведение опытов. Для этого испытания целесообразно проводить при условиях, которые позволяют обеспечить быстрое просачивание (10-15 минут) жидкости через образец.



Рис.ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-1. Стандартная проба

Очевидно, чем меньше будет толщина стенки образца, тем быстрее через него будет проникать жидкость. Следовательно, образец должен иметь минимальную толщину. Но, с другой стороны, чем больше будет толщина стенки образца, тем вернее будут показания герметичности. Таким образом, необходимо провести ряд опытов с целью определения оптимальной толщины стенки образца и установить зависимость ее от давления, при котором должно происходить просачивание жидкости в сравнительно небольшой промежуток времени. Для этой цели отлиты три стандартные пробы с размерами: диаметр - 30 мм, длина - 340 мм (Рис.ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-1) из чугунного лома следующего химического состава:

С - 3.47 %;

Si - 1.18 %;

Mn - 0.54 %;

S - 0.083 %;

Р - 0.185 %.

Механические свойства: НВ = 220,

sизг = 33.5 кг/мм2,

fпр = 3.8 мм.

Из каждой пробы были выточены образцы с толщиной рабочей части соответственно 0.5 ; 1.0; 1.5; 2.0; 2.5; 3.0 мм. Эти образцы подвергались испытанию на герметичность по описанной методике.

С целью исключения случайных ошибок испытания образцов на герметичность проводились дважды. При всех испытаниях проводился замер и фиксировалось время, при которых происходило просачивание керосина (h = 1,18 °Е) по всей контрольной поверхности образца. Опытами было установлено, что самое минимальное количество просочившейся жидкости, которая наблюдается на поверхности образца, составляет W » 0.002 мл. Это количество жидкости в дальнейшем использовалось для расчета герметичности чугуна.

Результаты испытаний герметичности чугунных образцов сведены в Таблица ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-1. Время просачивания керосина на контрольной поверхности образца определялось с момента воздействия на него критического давления.

Таблица ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-1



толщина стенки,d,см

критическое давление,Р,кг/см2

кол-во просочившейся жидкости,W,см3

площадь рабочей поверхности, см2

время просачивания, мин.

герметичность, кЕГ

удельная герметичность,кЕГ/см2

1

0.05

15

0.02

1.5

2

18

7200

2

0.05

20

0.02

1.5

2

24

9600

3

0.08

25

0.02

1.5

3

48

7500

4

0.1

50

0.02

1.5

2

66

6600

5

0.15

70

0.02

1.5

5

160

7100

6

0.15

50

0.02

1.5

7

220

9600

7

0.20

100

0.02

1.5

8

520

12600

8

0.20

150

0.02

1.5

5

470

10200

9

0.25

400

Просачивание не наблюдалось

10

0.25

400

Просачивание не наблюдалось

11

0.30

400

Просачивание не наблюдалось

12

0.30

400

Просачивание не наблюдалось



Рис.ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-2

На Рис.ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-2 представлена кривая герметичности чугунных образцов в зависимости от их толщины, построенная по данным Таблица ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-1.

В Таблица ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-2 приведены результаты повторных испытаний чугунных образцов на герметичность в зависимости от их толщины.

Таблица ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-2



толщина стенки,d,см

критическое давление, Р,кг/см2

кол-во просочившейся жидкости,W,см3

площадь рабочей поверхности, см2

время просачивания, мин.

герметичность, кЕГ

удельная герметичность,кЕГ/см2

1

0.06

20

0.02

1.5

2

25

7000

2

0.06

15

0.02

1.5

2

19

5200

3

0.1

18

0.02

1.5

1

12

1200

4

0.12

30

0.02

1.5

2

38

2700

5

0.12

50

0.02

1.5

2

64

4700

6

0.12

50

0.02

1.5

2

64

4700

7

0.16

250

0.02

1.5

1

156

6100

8

0.2

150

0.02

1.5

4

390

9900

9

0.25

400

Просачивание не наблюдалось

10

0.3

400

Просачивание не наблюдалось

11

0.3

400

Просачивание не наблюдалось

12

0.3

400

Просачивание не наблюдалось



Рис.ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-3

На Рис.ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-3 представлена кривая герметичности чугуна в зависимости от толщины стенки образца, построенная по данным Таблица ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-2.

Анализ экспериментальных данных, приведенных в таблицах Таблица ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-1 и Таблица ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-2, показывает, что герметичность чугунных образцов очень быстро возрастает с увеличением их величины.

Кривые на рисунках Рис.ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-2 и Рис.ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-3 построены по данным таблиц Таблица ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-1 и Таблица ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-2, имеют вид квадратичной параболы. Это дает основание полагать, что герметичность чугуна G является функцией от толщины стенки испытуемых образцов в квадрате, т.е.

G = f(d2).

(ОБРАБОТКА И АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ-1)

Достоверность этого предположения также подтверждается удельной герметичностью, которая была определена для исследуемых чугунов.

Расчетные данные удельной герметичности являются величиной почти одного порядка. Это обстоятельство показывает, что удельная герметичность для одной и той же марки чугуна должна, повидимому, являться величиной постоянной, независящей от толщины стенки отливки.

В результате эксперимента установлено что, оптимальные размеры рабочей части образца при испытании его на герметичность следует считать: толщина стенки d = 2 мм; диаметр рабочей части d = 1.4 см; площадь рабочей части w = 1.5 см2.
1   ...   13   14   15   16   17   18   19   20   21


написать администратору сайта