Главная страница

Современные пакеты разработки конструкторской документации


Скачать 48.85 Kb.
НазваниеСовременные пакеты разработки конструкторской документации
Дата05.10.2018
Размер48.85 Kb.
Формат файлаdocx
Имя файлаsovremennye-pakety-razrabotki-konstruktorskoy-dokumentacii-2018..docx
ТипДокументы
#52558

Перечень тем для контрольных работ по дисциплине

«Современные пакеты разработки конструкторской документации»

для направления 15.03.02

В рамках контрольной работы необходимо изложить теоретический материал по выбранной теме (в объёме 10 - 15 страниц), а также показать способность его применения на примере (в объёме трёх - семи страниц). Нумерация страниц и библиографический список обязательны. Оформление – скоросшиватель.

Тема реферата определяется по двум последним цифрам шифра (номера зачетной книжки).

Работы, выполненные не по своему варианту, рассматриваться не будут.
1. Основы САПР.

2. Технические средства САПР и их развитие.

3. Методическое обеспечение САПР. Математический и лингвистический виды обеспечений.

4. Программное обеспечение САПР.

5. Информационное обеспечение САПР.

6. Методы автоматизированного проектирования конструкции и технологического процесса различного уровня иерархии.

7. Математические модели (ММ) на различных иерархических уровнях.

8. Анализ, верификация и оптимизация проектных решений средствами САПР.

9. Повышение интеллектуальности подсистем проектирования.

10. Технологии искусственного интеллекта.

11. Философские аспекты проблемы систем искусственного интеллекта.

12. Машинный интеллект.

13. Экспертные системы в технологии как класс интеллектуальных систем.

14. Автоматизированные системы технологической подготовки производства.

15. Проектирование технологических процессов.

16. Алгоритмы проектирования технологических маршрутов.

17. Исходные данные для проектирования технологических операций.

18. Современные технологии САПР.

19. Оценка качества информационных систем.

20. Экономическая эффективность информационных технологий.
Содержание

  1. Программное обеспечение САПР………………………………………

3

2 Структура САПР …………………………………………………………

5

3 Обзор САПР………………………………………………………………

11

4 Применение САПР на предприятии…………………………………….

17

Библиографический список……………………………………………….

20


1 Программное обеспечение САПР
Эволюция мирового рынка дает преимущества стране, создающей у себя и передающей для производства другим странам наукоемкие изделия. Последние должны включать новые технологии и современные профессиональные знания. Идет торговля невидимым продуктом: знаниями, культурой; происходит навязывание высокоразвитыми странами стереотипа поведения. Именно поэтому в информационном обществе стратегическим ресурсом становятся информация, знание, творчество. Посредством дистанционного обучения, компьютерных игр, компьютерных видеофильмов и других информационных технологий (ИТ), компьютерные технологии оказывают огромное влияние на формирование условий и среды, в которых развиваются и процветают таланты. Предполагается, что социальное влияние информационной революции будет заключаться в синтезе западной и восточной мысли. ИТ играют серьезную стратегическую роль в развитии каждой страны. Их значение быстро увеличивается за счет того, что ИТ:

- активизируют и повышают эффективность использования информационных ресурсов, обеспечивают экономию сырья, энергии, полезных ископаемых, материалов и оборудования, людских ресурсов, социального времени;

- реализуют наиболее важные и интеллектуальные функции социальных процессов;

- занимают центральное место в процессе интеллектуализации общества, в развитии системы образования, культуры, новых (экранных) форм искусства, популяризации шедевров мировой культуры и истории развития человечества;

- обеспечивают информационное взаимодействие людей, способствуют распространению массовой информации ;

- быстро ассимилируются культурой общества, снимают многие социальные, бытовые и производственные проблемы, расширяют внутренние и международные экономические и культурные связи, влияют на миграцию населения по планете;- оптимизируют и автоматизируют информационные процессы в период становления информационного общества;

- играют ключевую роль в процессах получения, накопления, распространения новых знаний по трем направлениям.

Первое из них - информационное моделирование, позволяющее проводить "вычислительный эксперимент" даже в условиях, которые невозможны при натуральном эксперименте из-за опасности, сложности и дороговизны.

Второе направление основано на методах искусственного интеллекта, оно позволяет находить решения плохо формализуемых задач, задач с неполной информацией и нечеткими исходными данными по аналогии с созданием метапроцедур, используемых человеческим мозгом.

Третье направление базируется на методах когнитивной графики, т.е. совокупности приемов и методов образного представления условий задачи, которые позволяют сразу увидеть решение либо получить подсказку для его нахождения. Оно открывает возможности познания человеком самого себя, принципов функционирования своего сознания. Кроме того, в этом случае становится возможным реализовать методы информационного моделирования глобальных процессов, что обеспечивает возможность прогнозирования многих природных ситуаций в регионах повышенной социальной и политической напряженности, экологических катастроф, крупных техногенных аварий.

Автоматизация многих сфер человеческой деятельности прочно базируется на обработке, хранении и преобразовании больших объемов информации. Исключение не составляют и специализированные программные комплексы, занятые в сфере решения задач автоматизации проектирования, которые называются системами автоматизированного проектирования (САПР).


  1. Структура САПР 

Автоматизация проектирования занимает особое место среди информационных технологий.

Во-первых, автоматизация проектирования - синтетическая дисциплина, ее составными частями являются многие другие современные информационные технологии. Так, техническое обеспечение систем автоматизированного проектирования (САПР) основано на использовании вычислительных сетей и телекоммуникационных технологий, в САПР используются персональные компьютеры и рабочие станции, есть примеры применения мейнфреймов. Математическое обеспечение САПР отличается богатством и разнообразием используемых методов вычислительной математики, статистики, математического программирования, дискретной математики, искусственного интеллекта. Программные комплексы САПР относятся к числу наиболее сложных современных программных систем, основанных на операционных системах Unix, Windows 2000/XP, языках программирования С, С++, Java и других, современных CASE технологиях, реляционных и объектно-ориентированных системах управления базами данных (СУБД), стандартах открытых систем и обмена данными в компьютерных средах.

Во-вторых, знание основ автоматизации проектирования и умение работать со средствами САПР требуется практически любому инженеру-разработчику. Компьютерами насыщены проектные подразделения, конструкторские бюро и офисы. Работа конструктора за обычным кульманом, расчеты с помощью логарифмической линейки или оформление отчета на пишущей машинке стали анахронизмом. Предприятия, ведущие разработки без САПР или лишь с малой степенью их использования, оказываются неконкурентоспособными как из-за больших материальных и временных затрат на проектирование, так и из-за невысокого качества проектов.

Термин «САПР» в нашей стране обычно используют в тех случаях, когда речь идет о пакетах программ, которые в англоязычной терминологии называются CAD/CAM/CAE. Другими словами, это ПО для автоматизированного проектирования (CAD), подготовки производства (CAM) и инженерного анализа (CAE). Существуют САПР и для других областей - разработки электронных приборов, строительного проектирования, но они имеют свою специфику.

Доктор Патрик Хэнретти (Patrick Hanratty) основал компанию Manufacturing and Consulting Services (MCS) и разработал методики, которые составили основу большинства современных САПР. Вскоре появились и другие CAD-пакеты. В то время они работали на мэйнфреймах и мини-компьютерах и стоили очень дорого - в среднем 90 тыс. долл. за одно рабочее место. Очевидно, что лишь крупные предприятия могли позволить себе идти в ногу со временем.

Одновременно стали появляться и первые CAM-программы, позволяющие частично автоматизировать процесс производства с помощью программ для станков с ЧПУ, и CAE-продукты, предназначенные для анализа сложных конструкций. Так в 1971 г. компания MSC.Software выпустила систему структурного анализа MSC.Nastran, которая до сих пор занимает ведущее положение на рынке CAE.

Подготовка инженеров разных специальностей в области САПР включает базовую и специальную компоненты. Наиболее общие положения, модели и методики автоматизированного проектирования входят в программу курса, посвященного основам САПР, более детальное изучение тех методов и программ, которые специфичны для конкретных специальностей, предусматривается в профильных дисциплинах. Бурное развитие САПР происходило в 90-х годах, когда Intel выпустила процессор Pentium Pro, а Microsoft - систему Windows NT. Тогда на поле вышли новые игроки «средней весовой категории», которые заполнили нишу между дорогими продуктами, обладающими множеством функций, и программами типа AutoCAD. Как и любая сложная система, САПР состоит из подсистем. Различают подсистемы проектирующие и обслуживающие.Приложение Б.Проектирующие подсистемы непосредственно выполняют проектные процедуры. Примерами проектирующих подсистем могут служить подсистемы геометрического трехмерного моделирования механических объектов, изготовления конструкторской документации, схемотехнического анализа, трассировки соединений в печатных платах. Обслуживающие подсистемы обеспечивают функционирование проектирующих подсистем, их совокупность часто называют системной средой (или оболочкой) САПР. Типичными обслуживающими подсистемами являются подсистемы управления проектными данными (PDM - Product Data Management), управления процессом проектирования (DesPM - Design Process Management), пользовательского интерфейса для связи разработчиков с ЭВМ, CASE (Computer Aided Software Engineering) для разработки и сопровождения программного обеспечения САПР, обучающие подсистемы для освоения пользователями технологий, реализованных в САПР.

Структурирование САПР по различным аспектам обусловливает появление видов обеспечения САПР. Принято выделять семь видов обеспечения:

- техническое (ТО), включающее различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);

- математическое (МО), объединяющее математические методы, модели и алгоритмы для выполнения проектирования;

- программное (ПО), представляемое компьютерными программами САПР;

- информационное (ИО), состоящее из баз данных (БД), систем управления базами данных (СУБД), а также других данных, используемых при проектировании; отметим, что вся совокупность используемых при проектировании данных называется информационным фондом САПР, а БД вместе с СУБД носит название банка данных (БнД);

- лингвистическое (ЛО), выражаемое языками общения между проектировщиками и ЭВМ, языками программирования и языками обмена данными между техническими средствами САПР;

- методическое (МетО), включающее различные методики проектирования, иногда к МетО относят также математическое обеспечение;

- организационное, представляемое штатными расписаниями, должностными инструкциями и другими документами, регламентирующими работу проектного предприятия.

Классификацию САПР осуществляют по ряду признаков, например, по приложению, целевому назначению, масштабам (комплексности решаемых задач), характеру базовой подсистемы - ядра САПР.

По приложениям наиболее представительными и широко используемыми являются следующие группы САПР:

- для применения в отраслях общего машиностроения. Их часто называют машиностроительными САПР или MCAD (Mechanical CAD) системами.

- для радиоэлектроники. Их названия - ECAD (Electronic CAD) или EDA (Electronic Design Automation) системы.

- в области архитектуры и строительства.

Кроме того, известно большое число более специализированных САПР, или выделяемых в указанных группах, или представляющих самостоятельную ветвь в классификации. Примерами таких систем являются САПР больших интегральных схем (БИС); САПР летательных аппаратов; САПР электрических машин и т.п.

По целевому назначению различают САПР или подсистемы САПР, обеспечивающие разные аспекты проектирования. Так, в составе MCAD появляются CAE/CAD/CAM системы:

- САПР функционального проектирования, иначе САПР-Ф или CAE (Computer Aided Engineering) системы.

- конструкторские САПР общего машиностроения - САПР-К, часто называемые просто CAD системами;

- технологические САПР общего машиностроения - САПР-Т, иначе называемые автоматизированными системами технологической подготовки производства АСТПП или системами CAМ (Computer Aided Manufacturing).

По масштабам различают отдельные программно-методические комплексы (ПМК) САПР, например, комплекс анализа прочности механических изделий в соответствии с методом конечных элементов (МКЭ) или комплекс анализа электронных схем; системы ПМК; системы с уникальными архитектурами не только программного (software), но и технического (hardware) обеспечений.

По характеру базовой подсистемы различают следующие разновидности САПР:

- САПР на базе подсистемы машинной графики и геометрического моделирования. Эти САПР ориентированы на приложения, где основной процедурой проектирования является конструирование, т.е. определение пространственных форм и взаимного расположения объектов. Поэтому к этой группе систем относится большинство графических ядер САПР в области машиностроения;

- САПР на базе СУБД. Они ориентированы на приложения, в которых при сравнительно несложных математических расчетах перерабатывается большой объем данных. Такие САПР преимущественно встречаются в технико-экономических приложениях, например, при проектировании бизнес-планов, но имеют место также при проектировании объектов, подобных щитам управления в системах автоматики;

- САПР на базе конкретного прикладного пакета. Фактически это автономно используемые программно-методические комплексы, например, имитационного моделирования производственных процессов, расчета прочности по методу конечных элементов, синтеза и анализа систем автоматического управления и т.п. Часто такие САПР относятся к системам CAE. Примерами могут служить программы логического проектирования на базе языка VHDL, математические пакеты типа MathCAD;

Функции, характеристики и примеры CAE/CAD/CAM-систем. Функции CAD-систем в машиностроении подразделяют на функции двухмерного (2D) и трехмерного (3D) проектирования. К функциям 2D относятся черчение, оформление конструкторской документации; к функциям 3D - получение трехмерных моделей, метрические расчеты, реалистичная визуализация, взаимное преобразование 2D и 3D моделей.

Среди CAD-систем различают «легкие» и «тяжелые» системы. Первые из них ориентированы преимущественно на 2D графику, сравнительно дешевы и менее требовательны в отношении вычислительных ресурсов. Вторые ориентированы на геометрическое моделирование (3D), более универсальны, дороги, оформление чертежной документации в них обычно осуществляется с помощью предварительной разработки трехмерных геометрических моделей. Основные функции CAM-систем: разработка технологических процессов, синтез управляющих программ для технологического оборудования с числовым программным управлением (ЧПУ), моделирование процессов обработки, в том числе построение траекторий относительного движения инструмента и заготовки в процессе обработки, генерация постпроцессоров для конкретных типов оборудования с ЧПУ (NC - Numerical Control), расчет норм времени обработки. Наиболее известны (к 1999 г.) следующие CAE/CAD/CAM-системы, предназначенные для машиностроения. «Тяжелые» системы (в скобках указана фирма, разработавшая или распространяющая продукт): Unigraphics (EDS Unigraphics); Solid Edge (Intergraph); Pro/Engineer (PTC - Parametric Technology Corp.), CATIA (Dassault Systemes), EUCLID (Matra Datavision), CADDS.5 (Computervision, ныне входит в PTC) и др.

«Легкие» системы: AutoCAD (Autodesk); АДЕМ; bCAD (ПроПро Группа, Новосибирск); Caddy (Ziegler Informatics); Компас (Аскон, С.Петербург); Спрут (Sprut Technology, Набережные Челны); Кредо (НИВЦ АСК, Москва).

Системы, занимающие промежуточное положение (среднемасштабные): Cimatron, Microstation (Bentley), Euclid Prelude (Matra Datavision), T-FlexCAD (Топ Системы, Москва) и другие. C ростом возможностей персональных ЭВМ грани между «тяжелыми» и «легкими» CAD/CAM-системами постепенно стираются. 

3 Обзор САПР 

Это системы, которые, во-первых, обеспечивают весь цикл создания изделия от концептуальной идеи до реализации, а во-вторых (и это самое главное), создают проектно-технологическую среду для одновременной работы всех участников создания изделия с единой виртуальной электронной моделью этого изделия.

Эти системы применяются для решения наиболее трудоемких задач - моделирования поведения сложных механических систем в реальном масштабе времени, оптимизирующих расчетов с визуализацией результатов, расчетов температурных полей и теплообмена и т.д. Обычно в состав системы входят как чисто графические, так и модули для проведения расчетов и моделирования, постпроцессоры для станков с ЧПУ. К сожалению, эти самые мощные САПР наиболее громоздки и сложны в работе, а также имеют значительную стоимость.

Тяжёлые САПР применительны к созданию сложных изделий машиностроения, в основе организации компьютерной технологии лежит создание полного электронного макета изделия, так как именно создание трехмерных электронных моделей, адекватных реально проектируемому изделию, открывает колоссальные возможности для создания более качественной продукции (особенно сложной, наукоемкой продукции) и в более сжатые сроки. В процессе проектирования и производства сложных и многокомпонентных изделий все участвующие в проектировании должны, работая одновременно и наблюдая работу друг друга, создавать сразу на компьютерах электронные модели деталей, узлов, агрегатов, систем и всего изделия в целом.

Также необходимо одновременно решать задачи концептуального необходимо проектирования, всевозможных видов инженерного анализа, моделирования ситуаций, а также компоновки изделия и формирования внешних обводов. Не дожидаясь полного окончания разработки нового изделия, эту информацию следует использовать для технологической подготовки производства и производства как такового. Кроме того, необходимо автоматизировано управлять и всеми создаваемыми данными электронной модели (то есть структурой изделия), и самим процессом создания изделия, и к тому же иметь возможность управлять структурой процесса создания изделия. Для реализации именно компьютерной технологии проектирования и производства должны применяться системы автоматизированного проектирования инженерного анализа и технологической подготовки производства (CAD/CAE/CAM) высшего уровня, а также системы управления проектом (PDM - Product Data Management).

Система CAD/CAE/CAM высшего уровня это такая система, которая, во-первых, обеспечивает весь цикл создания изделия от концептуальной идеи до реализации, а во-вторых (и это самое главное), создает проектно-технологическую среду для одновременной работы всех участников создания изделия с единой виртуальной электронной моделью этого изделия .В западных странах эта организационная философия обозначается аббревиатурой CAPE (Concurrent Art-to-Product Environment), что можно перевести как «Единая среда создания изделия от идеи до реализации». Руководствуясь такой концепцией, можно резко сократить цикл создания изделия, повысить технический уровень проектов, избежать нестыковок и ошибок в изготовлении оснастки и самого изделия благодаря тому, что в подобном случае все данные взаимосвязаны и контролируемы.В настоящее время на рынке осталось три САПР верхнего ценового класса - Unigraphics NX компании EDS, CATIA французской фирмы Dassault Systemes (которая продвигает ее вместе с IBM) и Pro/Engineer от РТС (Parametric Technology Corp.). Раньше мощных системы было больше, но после череды слияний и поглощений компаний, число пакетов сократилось.Главная особенность «тяжелых» САПР - обширные функциональные возможности, высокая производительность и стабильность работы - все это результат длительного развития. Однако, эти системы немолоды - CATIA появилась в 1981 г., Pro/Engineer - в 1988 г., а Unigraphics NX, хотя и вышла в 2002 г., является результатом слияния двух весьма почтенных по возрасту систем - Unigraphics и I-Deas, полученных фирмой EDS в результате приобретения компаний Unigraphics и SDRC. Все названные программы включают средства трехмерного твердотельного и поверхностного моделирования, а также модули структурного анализа и подготовки к производству, т. е. являются интегрированными пакетами CAD/CAM/CAE. Кроме того, все три поставщика предлагают для своих САПР системы управления инженерными данными (PDM), позволяющие управлять всей конструкторско-технологической документацией и предоставлять дополнительные данные, экспортированные из других корпоративных систем. Несмотря на то, что тяжелые системы стоят дороже своих более «легких» собратьев, затраты на их приобретение окупаются, особенно когда речь идет о сложном производстве, например машиностроении, двигателестроении, авиационной и аэрокосмической промышленности. Однако крупных клиентов, способных платить за САПР миллионы долларов не так много. По мнению аналитиков, этот сегмент рынка уже практически насыщен и поделен между «китами» индустрии. Сейчас производители средств автоматизации проектирования возлагают надежды на предприятия среднего и малого бизнеса, которых гораздо больше, чем промышленных гигантов. Для них предназначены системы среднего и легкого классов. 

Средние САПР заняли промежуточное положение между тяжелым и легким классами, унаследовав от первых трехмерные параметрические возможности, а от вторых - невысокую цену и ориентацию на платформу Windows. Они произвели революционный переворот в мире САПР, открыв небольшим конструкторским организациям путь для перехода от двумерного к трехмерному проектированию.

Важную роль в становлении среднего класса сыграли два ядра твердотельного параметрического моделирования ACIS и Parasolid, которые появились в начале 90-х годов и сейчас используются во многих ведущих САПР. Геометрическое ядро служит для точного математического представления трехмерной формы изделия и управления этой моделью. Полученные с его помощью геометрические данные используются системами CAD, CAM и САЕ для разработки конструктивных элементов, сборок и изделий. В настоящее время Parasolid принадлежит фирме EDS, а ACIS - компании Dassault, которые продают лицензии на их использование всем желающим. Таких желающих немало - эти ядра составляют основу более сотни САПР, а число проданных лицензий перевалило за миллион. Успех понятен - ведь использование готового ядра избавляет разработчиков системы от решения трудоемких задач твердотельного моделирования и позволяет сосредоточиться на пользовательском интерфейсе и других функциях. Впрочем, это не значит, что все САПР среднего класса построены на базе этих механизмов. Многие компании ценят независимость и предпочитают разрабатывать собственные «движки». К среднему классу аналитики относят системы стоимостью порядка 4-6 тыс. долл. за рабочее место (цены в США). Для сравнения: у тяжелых САПР рабочее место обходится примерно в 25 тыс. долл., но в последнее время поставщики выпустили облегченные версии продуктов, которые стоят дешевле.
Программное обеспечение САПР представляет собой сложную программную систему, включающую в себя десятки и сотни компонентов. Для успешного функционирования и конкурентоспособности промышленных предприятий в современных условиях абсолютно необходимы передовые информационные технологий. Они позволяют не только решать широкий круг задач в сфере автоматизации финансово-хозяйственной и управленческой деятельности, но и осуществлять комплексную автоматизацию основных технологических и производственных бизнес-процессов.

Потребности современного производства диктуют необходимость глобального использования информационных компьютерных технологий на всех этапах жизненного цикла изделия: от предпроектных исследований до утилизации изделия.

Область применения системы САПР очень велика. Возможности САПР во многом определяются программным обеспечением, которое зачастую делят на уровни, опираясь на сложность системы и область ее возможностей.

Системы Автоматизированного Проектирования нижнего уровня в основном применяются при выпуске конструкторской документации, обычно она не связана друг с другом. А также САПР, которые обеспечивают выпуск комплектов конструкторской документации (КД), включая документы (экспликации, спецификации и т.п.) текстовые, сборочные, подсборочные, увязанные друг с другом. Применяются такие системы в создании проектов с различной степенью сложности в области строительства, архитектуры, геодезии, генплана, машиностроения и других. САПР среднего уровня обеспечивает поверхностное и твердотельное моделирование в трехмерном пространстве, а также выпуск документации на проектируемые модели. Область применения САПР этого уровня - машиностроение (трехмерное проектирование), архитектура, геодезия и многое другое. Оно позволяет инженерам-конструкторам, которые работают в различных областях электроники, механики, архитектуры сильно повысить производительность контроля, документирования и проектирования изделий.

САПР верхнего уровня позволяет производить комплексное решение задач в моделировании объектов, выпуска конструкторской документации, расчетов, помогает решить специфические прикладные задачи. Примером может послужить расчет и прокладка газового трубопровода. Системы САПР верхнего уровня применяются в различных областях архитектуры, строительства, машиностроения и многих других.

С помощью САПР увеличивается эффективность выполняемых проектных работ за счет:

·очень удобных и принципиально новых средств рисования схем;

·в программном обеспечении заложено автоматическое формирование монтажно-коммутационных схем;

·средств, которые управляют проектом, состоят из множества документов;

·повышение уровня качества выпускаемой продукции.

Результатами САПР служат законченные проекты или части его. Они могут быть использованы как другими САПР, так и сделаны в виде уже законченного проекта, который открывается самостоятельно без необходимости установки дополнительного программного обеспечения. 
4 Применение САПР на предприятии

Широкое распространение AutoCAD на предприятии обусловлено не в последнюю очередь развитыми средствами разработки и адаптации, которые позволяют настроить систему под нужды конкретных пользователей и значительно расширить функциональность базовой системы. Большой набор инструментальных средств для разработки приложений делает базовую версию AutoCAD универсальной платформой для разработки приложений. На базе AutoCAD самой компанией Autodesk и сторонними производителями создано большое количество специализированных прикладных приложений, таких как AutoCAD Mechanical, AutoCAD Electrical, AutoCAD Architecture, GeoniCS, Promis-e, PLANT-4D, AutoPLANT, СПДС GraphiCS, MechaniCS, GEOBRIDGE, САПР ЛЭП, Rubius Electric Suite и других.

AutoCAD — двух- и трёхмерная система автоматизированного проектирования и черчения, разработанная компанией Autodesk. Первая версия системы была выпущена в 1982 году. AutoCAD и специализированные приложения на его основе нашли широкое применение в машиностроении, строительстве, архитектуре и других отраслях промышленности. Программа выпускается на 18 языках. Уровень локализации варьирует от полной адаптации до перевода только справочной документации. Русскоязычная версия локализована полностью, включая интерфейс командной строки и всю документацию, кроме руководства по программированию. Ранние версии AutoCAD оперировали небольшим числом элементарных объектов, такими как круги, линии, дуги и текст, из которых составлялись более сложные. В этом качестве AutoCAD заслужил репутацию «электронного кульмана», которая остаётся за ним и поныне. Однако на современном этапе возможности AutoCAD весьма широки и намного превосходят возможности «электронного кульмана».

В области двумерного проектирования AutoCAD по-прежнему позволяет использовать элементарные графические примитивы для получения более сложных объектов. Кроме того, программа предоставляет весьма обширные возможности работы со слоями и аннотативными объектами (размерами, текстом, обозначениями). Использование механизма внешних ссылок (XRef) позволяет разбивать чертеж на составные файлы, за которые ответственны различные разработчики, а динамические блоки расширяют возможности автоматизации 2D-проектирования обычным пользователем без использования программирования. Начиная с версии 2010 в AutoCAD реализована поддержка двумерного параметрического черчения. В версии 2014 появилась возможность динамической связи чертежа с реальными картографическими данными (GeoLocation API).

Версия программы AutoCAD 2014 включает в себя полный набор инструментов для комплексного трехмерного моделирования (поддерживается  твердотельноеповерхностное и  полигональное моделирование). AutoCAD позволяет получить высококачественную визуализацию моделей с помощью системы рендеринга mental ray. Также в программе реализовано управление трёхмерной печатью (результат моделирования можно отправить на 3D-принтер) и поддержка облаков точек (позволяет работать с результатами 3D-сканирования). Тем не менее следует отметить, что отсутствие трёхмерной параметризации не позволяет AutoCAD напрямую конкурировать с машиностроительными САПР среднего класса, такими как InventorSolidWorks и другими[5]. В состав AutoCAD 2012 включена программа Inventor Fusion, реализующая технологию прямого моделирования

Динамические блоки — двухмерные параметрические объекты, обладающие настраиваемым набором свойств. Динамические блоки предоставляют возможность сохранения в одном блоке (наборе графических примитивов) нескольких геометрических реализаций, отличающихся друг от друга размером, взаимным расположением частей блока, видимостью отдельных элементов и т. п. С помощью динамических блоков можно сократить библиотеки стандартных элементов (один динамический блок заменяет несколько обычных). Также активное использование динамических блоков в ряде случаев позволяет значительно ускорить выпуск рабочей документации. На

На нашем предприятии мои коллеги и я, в том числе используем следующие модули программы:

  • AutoCAD Architecture — версия, ориентированная на архитекторов и содержащая специальные дополнительные инструменты для архитектурного проектирования и черчения, а также средства выпуска строительной документации.

  • AutoCAD Electrical разработан для проектировщиков электрических систем управления и отличается высоким уровнем автоматизации стандартных задач и наличием обширных библиотек условных обозначений.

  • AutoCAD Civil 3D — решение для проектирования объектов инфраструктуры, предназначенное для землеустроителей, проектировщиков генплана и проектировщиков линейных сооружений. Помимо основных возможностей, AutoCAD Civil 3D может выполнять такие виды работ, как геопространственный анализ для выбора подходящей стройплощадки, анализ ливневых стоков для обеспечения соблюдения экологических норм, составление сметы и динамический расчет объёмов земляных работ.

  • AutoCAD MEP ориентирован на проектирование инженерных систем объектов гражданского строительства: систем сантехники и канализации, отопления и вентиляции, электрики и пожарной безопасности. Реализовано построение трехмерной параметрической модели, получение чертежей и спецификаций на её основе.

  • AutoCAD Map 3D создан для специалистов, выполняющих проекты в сфере транспортного строительства, энергоснабжения, земле- и водопользования и позволяет создавать, обрабатывать и анализировать проектную и ГИС-информацию.


Библиографический список

1Быков А. Цеховая САПР на базе ADEM А7 САПР и графика. Компьютер Пресс. 2007. № 1. - 30 с.

2.Жук Д.М. Технические средства и операционные системы САПР. - М.: Высшая школа. 2006. - 200 с.

3.Казаков А., Карабчеев К., Кашуба А. Что такое ADEM CАПР и графика Компьютер Пресс. 2008. № 9. - 62 с.

4.Литовка Ю.В., Дьяков И.А., Романенко А.В., Алексеев С.Ю., Попов А.И. Основы проектирования баз данных в САПР: Учебное пособие. - Тамбов: Издательство ТГТУ, 2008. - 170 с.

5.Майстренко Н.В., Майстренко А.В. Программное обеспечение САПР. Операционные системы: Учебное пособие. - Тамбов: Издательство ТГТУ, 2007. - 99 с.

6.Норенков И.П. Автоматизированное проектирование. Учебник. Серия: Информатика в техническом университете. - M.: Изд-во МГТУ им. Н.Э. Баумана, 2006. - 380 с.

7.Петров А.В. Проблемы и принципы создание САПР. - М.: Высшая школа, 2008. - 160 с.

8.Феоктистов В., Карабчеев К. ADEM-Проектирование технологичных конструкции CАПР и графика. Компьютер Пресс. 2007. № 1. - 60 с.

9. Юзмухаметов А. Автоматизация получения технической документации в ADEM САПР и графика.Компъютер Пресс. 2006. № 2. - 99 с.


написать администратору сайта