Главная страница
Навигация по странице:

  • Влияние способа нормализации на состав и свойства высокожирных сливок

  • Получение масла на различных маслообразователях.

  • * йодное число 39 и выше. ** йодное число ниже 39

  • Влияние способа производства на распределение плазмы в масле (по данным Ф.А, Вышемирского)

  • Состав плазмы в зависимости от способа производства масла(по данным Ф.А. Вышемирского)

  • Газовая фаза

  • Структурно-механические характеристики сливочного масла

  • Технология молока и молочных продуктов


    Скачать 3.66 Mb.
    НазваниеТехнология молока и молочных продуктов
    АнкорТехнология молока и молочных продуктов.doc
    Дата28.01.2017
    Размер3.66 Mb.
    Формат файлаdoc
    Имя файлаТехнология молока и молочных продуктов.doc
    ТипУчебник
    #380
    страница34 из 49
    1   ...   30   31   32   33   34   35   36   37   ...   49

    Глава 3. ТЕХНОЛОГИЯ МАСЛА СПОСОБОМ ПРЕОБРАЗОВАНИЯ ВЫСОКОЖИРНЫХ СЛИВОК


    Технологический процесс производства сливочного масла способом преобразования высокожирных сливок (ПВЖС) включает приемку молока, охлаждение, хранение, подогревание, сепарирование молока (получение сливок средней жирности), тепловую обработку сливок, сепарирование сливок (получение высокожирных сливок), посолку (только для соленого масла), нормализацию высокожирных сливок по влаге, термомеханическую обработку высокожирных сливок, фасование и термостатирование масла, хранение масла.

    ПОЛУЧЕНИЕ И НОРМАЛИЗАЦИЯ ВЫСОКОЖИРНЫХ СЛИВОК


    Высокожирные сливки получают путем сепарирования сливок средней жирности (32–37%). Для этого сливки средней жирности после пастеризации направляют на сепаратор для высокожирных сливок, где под действием центробежной силы жировые шарики максимально концентрируются. Температуру сепарирования поддерживают на уровне 65–70 С, при этом жир находится в жидком состоянии, а оболочки жировых шариков сильно гидратированы и несмотря на максимальное сближение их, самопроизвольного разрушения оболочек жировых шариков не происходит. Более высокая температура сепарирования приводит к быстрому испарению влаги с поверхности продукта, снижению стабильности оболочек жировых шариков и увеличению количества деэмульгированного жира.

    При сепарировании следует получать высокожирные сливки с заданным содержанием влаги, что позволяет исключить их последующую нормализацию. Нормализация приводит к ухудшению консистенции масла и понижению производительности маслообразователя.

    Полученные высокожирные сливки с температурой 60–70 °С поступают в емкости для нормализации. Сливки нормализуют обычно по содержанию влаги, а в ряде случаев – по жиру и СОМО, пахтой, молоком, сливками, молочным жиром и др. Массовая доля влаги, жира и СОМО в нормализованных сливках должна соответствовать массовой доле влаги, жира и СОМО в получаемом масле.

    Если содержание влаги в высокожирных сливках ниже требуемого, их нормализуют пахтой, пастеризованным цельным молоком или сливками. Для нормализации высокожирных сливок не следует использовать обезжиренное молоко или воду, так как это приводит к увеличению вязкости, а также к снижению СОМО в высокожирных сливках, а, следовательно, и в масле при одновременном увеличении в них эмульгированного жира и повышению стабильности эмульсии жира, что затрудняет процесс преобразования высокожирных сливок в масло и тем самым вызывает понижение производительности маслообразователя.

    Данные по влиянию способа нормализации высокожирных сливок на содержание в них СОМО, эмульгированного жира и вязкость приведены в табл. .

    Если массовая доля влаги в высокожирных сливках больше, чем требуется, их нормализуют молочным жиром или высокожирными сливками с более низкой массовой долей влаги, чем в нормализуемых сливках.

    Если требуется нормализация высокожирных сливок по СОМО, то используют сгущенное (или сухое) обезжиренное молоко либо пахту, которые предварительно восстанавливают в натуральном обезжиренном молоке или пахте.

    Влияние способа нормализации на состав и свойства высокожирных сливок

    Способ нормализации

    Массовая доля, %

    Вязкость,

    10-3 Па·с

    (при 60 ºС)

    влаги

    СОМО

    эмульгированного жира

    Сливки, пастеризованные при 92-95ºС

    58,8



    92

    220

    Высокожирные сливки (при 65ºС):













    до нормализации

    19,3

    2,0

    86

    383

    после нормализации:













    - сливками

    24,2

    2,6

    87

    258

    - пахтой

    24,2

    2,6

    88

    240

    - обезжиренным молоком

    24,2

    2,4

    89

    207

    - водой

    24,2

    2,2

    92

    187

    Высокожирные сливки, полученные с заданной массовой долей влаги

    24,2

    2,6

    87

    292


    Каротин вносят в высокожирные оливки тонкой струей при непрерывном перемешивании в течение 4–8 мин.

    После нормализации и тщательного перемешивания сливок емкости для нормализации закрывают крышками во избежание испарения и загрязнения, а высокожирные сливки направляют в маслообразователь для термомеханической обработки, при этом сливки перемешивают через каждые 10–15 мин, чтобы избежать расслаивания фаз (жир–плазма), т. е. отстоя сливок. В маслообразователе сливки охлаждаются и подвергаются механическому воздействию для получения масла.

    ТЕРМОМЕХАНИЧЕСКАЯ ОБРАБОТКА ВЫСОКОЖИРНЫХ СЛИВОК


    Высокожирные сливки являются высококонцентрированной эмульсией молочного жира в плазме молока. Массовая доля в них жира (61,5–83 %) превышает предел концентрации, при котором жировые шарики могут сохранять шарообразную форму. Однако, неоднородность размеров жировых шариков допускает такую возможность. По структуре высокожирные сливки представляют концентрат плотно упакованных жировых шариков с ненарушенными оболочками.

    При температуре, когда жир находится в расплавленном состоянии, такая эмульсия обладает достаточно высокой устойчивостью. Охлаждение высокожирных сливок до температуры ниже точки отвердевания основной массы глицеридов и интенсивная механическая обработка приводят к необратимому разрушению их структуры. Это свойство используется при термомеханической обработке высокожирных сливок для преобразования их в масло.

    В процессе термомеханической обработки высокожирных сливок создаются условия, необходимые для кристаллизации триглицеридов молочного жира и смены фаз (разрушение эмульсии высокожирных сливок жир/вода и образование эмульсии вода/жир – масло).

    Термомеханическая обработка осуществляется на двух темперетурных стадиях: первая – интенсивное охлаждение высокожирных сливок от 60–70С до температуры ниже начала кристаллизации основной массы глицеридов молочного жира 20–23 С; вторая – охлаждение от температуры 20–23 С до 11–17 С. Молочный жир отвердевает в температурной зоне от 6 до 23 С, но основная масса глицеридов кристаллизуется при охлаждении сливок до 11С. Дальнейшее понижение температуры до 8 С не оказывает существенного влияния на консистенцию масла, тогда как увеличение вязкости продукта осложняет работу маслообразователя. На практике конечную температуру охлаждения определяют с учетом содержания в молочном жире высокоплавких глицеридов и выбирают с таким расчетом, чтобы обеспечить максимально возможную степень их отвердевания во время обработки в маслообразователе.

    Преобразование высокожирных сливок в масло во время термомеханической обработки является сложным физико-химическим процессом, включающим обращение фаз, массовую кристаллизацию глицеридов, формирование пространственной структуры масла (первичное структурообразование).

    Обращение фаз эмульсии высокожирных сливок является главным физическим процессом маслообразования. Обращение фаз происходит на первой температурной стадии, то есть при охлаждении высокожирных сливок от 60–70 ºС до температуры ниже точки кристаллизации молочного жира (20–23 ºС). Скорость охлаждения на этой стадии наиболее интенсивная. Быстрое охлаждение высокожирных сливок способствует кристаллизации высоко- и среднеплавких глицеридов в объеме неразрушенного жирового шарика с образованием мелких кристаллов. При быстром охлаждении наряду со снижением разрушения эмульсии происходит повышение степени переохлаждения жира, так как жир в состоянии эмульсии способен к большему переохлаждению, чем находящийся в свободном состоянии.

    Обращение жировой фазы начинается с момента появления деэмульгированного (свободного от оболочки) жира, выделившегося через поврежденные оболочки жировых шариков. Дисперсионной (сплошной) средой становится жидкий жир, в котором в виде дисперсной фазы находится отвердевший жир, капельки воды, пузырьки воздуха и отдельные жировые шарики с ненарушенными оболочками. Таким образом происходит обращение жировой фазы, то есть превращение эмульсии типа «жир в воде» (высокожирные сливки) в эмульсию типа «вода в жире» (масло). Степень обращения жировой фазы характеризуется содержанием деэмульгированного жира. На первой температурной стадии массовая доля деэмульгированного жира в сливках составляет 80–94%, а твердого жира – 1,5–2 %.

    Массовая кристаллизация глицеридов молочного жира происходит во второй температурной зоне, то есть при охлаждении от 22–23 ºС до 10–16 ºС. Начало массовой кристаллизации характеризуется резким возрастанием вязкости продукта. На этой стадии скорость обращения жировой фазы постепенно снижается, и дестабилизация практически заканчивается. В состоянии неразрушенной эмульсии сохраняется лишь незначительная часть жира (2–6 %) в виде наиболее мелких жировых шариков, а доля деэмульгированного жира составляет 94–98 %.

    Формирование пространственной структуры. Первичное структурообразование молочного жира происходит во второй температурной зоне (охлаждение от 22–23 ºС до 10–16 ºС) практически уже после обращения фаз жировой эмульсии. Первичное структурообразование начинается при массовой доле твердого жира 4–7%.

    Интенсивное механическое перемешивание предупреждает образование крупных кристаллов жира и раздробляет ранее образовавшиеся, обусловливает равномерное распределение жидкой и твердой фаз жира и всех других компонентов.

    В процессе термомеханической обработки первичная структура частично разрушается, продукт находится в текучем состоянии и в таком виде поступает из маслообразователя в тару. Свежевыработанное масло содержит сравнительно высокую массовую долю твердого жира 30–38 %. При этом часть жира находится в переохлажденном состоянии, вследствие чего продукт, попадая в тару, быстро (за 20–90 с) отвердевает.

    Следует отметить, что степень завершенности формирования первичной структуры при термомеханической обработке имеет определяющее значение для консистенции сливочного масла. Наиболее полное завершение структурообразования при термомеханической обработке положительно сказывается на консистенции продукта.

    Во время термомеханической обработки начинается формирование структуры масла, но полностью не завершается, оно продолжается во время термостатирования и хранения масла.

    При термостатировании свежевыработанного масла необходимо создать условия, благоприятные для завершения формирования структуры сливочного масла. Различают две стадии формирования структуры сливочного масла после окончания термомеханической обработки: стадию вторичного структурообразования и стадию окончательного формирования структуры сливочного масла.

    Продолжительность стадии вторичного структурообразования зависит от температуры. Чем выше температура термостатирования (14–16 ºC), тем интенсивнее и полнее происходят процессы образования высокоплавких групп глицеридов в твердой фазе, стабильных полиморфных форм в процессе фазовых изменений глицеридов молочного жира и формирование коагуляционной структуры продукта. Стадия вторичного структурообразования завершается в основном через 3–4 ч при температуре 14 ºC и через 2–3 ч при 16 ºC.

    Для масла с недостаточно твердой консистенцией рекомендуется термостатирование в течение первых 5 дней при температуре 5 °С.

    Масло с достаточно высокой твердостью рекомендуется термостатировать в течение 3–5 дней после выработки при температуре 10–15°С.

    Стадия окончательного формирования структуры завершается в процессе холодильного хранения масла и составляет 3–4 недели при +5 ÷ –10 °С.

    Получение масла на различных маслообразователях. Высокожирные сливки преобразуют в масло на специальных аппаратах – маслообразователях, которые включаются в технологическую линию.

    Схема технологической линии производства масла способом преобразования высокожирных сливок приведена на рис. .

    Сливки средней жирности пастеризуются на установке трубчатого типа и подаются на сепаратор для высокожирных сливок. Полученные высокожирные сливки поступают в емкость для нормализации. Для создания непрерывного процесса маслообразования обычно устанавливают три емкости для нормализации. Нормализованные сливки подаются насосом-дозатором в маслообразователь, где они преобразуются в масло.

    Для получения масла из высокожирных сливок предназначены цилиндрический и пластинчатый маслообразователи, вакуум-маслообразователь.

    Цилиндрический маслообразователь (рис. ) состоит из трех последовательно сообщающихся цилиндров с рубашками, в которые подается хладоноситель (рассол или ледяная вода). В каждом цилиндре имеется вытеснительный барабан, который при вращении перемешивает и продвигает сливки, находящиеся в зазоре между цилиндром и вытеснительным барабаном, по спирали вдоль барабана. На барабане закреплены два откидывающихся при вращении плоских ножа, которые снимают с внутренней охлаждающей поверхности цилиндра отвердевший слой высокожирных сливок.

    Параметры термомеханической обработки высокожирных сливок в цилиндрических и пластинчатых маслообразователях

    Маслообразователи

    Массовая доля влаги в масле, %

    Производительность. кг/ч

    Температура на выходе, оС

    Частота вращения вала, с-1

    Весенне-летний период*

    Цилиндрический трехцилиндровый
    Т1-ОМ-2Т
















    16

    600-750

    16-17

    2,5




    20

    500-600

    13-15

    2,5




    25

    400-500

    13-14

    2,5




    35

    350-400

    12-14

    2,5




    16

    800-850

    14-15


















































    трехцилиндровый 16 800-850 14 – 15 3,0 –

    Я7-ОМ-3Т

    (модернизированный) 20 700-750 15 – 15 3,0 –

    25 650-700 14 – 15 3,0 –

    35 550-600 14 – 16 3,0 –

    четырехцилиндровый

    для низкожирных видов

    масла Я5-ОМЛ 35 1000 17 – 21 8,3 –

    Пластинчатый

    Р3-ОУА-1000 16 1000 16,5–18,0 1,16 4,67

    20 1000 16,5–18,0 1,16 – 1,33 4,67 – 5,33

    25 850-950 16,5 – 18,0 1,66 6,67

    35 600-700 17,0 – 18,5 1,66 6,67

    Осенне-зимний период**

    Цилиндрический

    трехцилиндровый 16 500-550 13 – 15 2,5 –

    Т1-ОМ-2Т 20 500-600 13 – 15 2,5 –

    25 320-420 12 – 13 2,5 –

    35 300-350 11 – 12 2,5 –

    трехцилиндровый 16 750-800 14 – 16 3,0 –

    Я7-ОМ-3Т 20 650-700 14 – 16 3,0 –

    25 600-650 15 – 16 3,0 –

    35 500-550 15 – 16 3,0 –

    четырехцилиндро- 35 1000 17 – 21 постоянная –

    вый Я5-ОУА-1000 8,3

    Пластинчатый

    Р3-ОУА-1000 16 1000 17,0 – 17,5 1,33 – 1,66 5,33 – 6,67

    20 1000 16,5 – 17,5 1,33 - 1,66 5,33 – 6,67

    25 800-900 16,5 – 18,0 1,66 6,67

    35 550-600 17,5 – 18,5 1,66 6,67

    * йодное число 39 и выше.

    ** йодное число ниже 39

    Сливи при температуре 60–70 С поступают сначала в нижний, затем в средний и верхний цилиндры. В нижнем цилиндре сливки интенсивно охлаждаются до 22–23 С, сохраняя свойства эмульсии жира в плазме, и перемешиваются для ускорения образования центров кристаллизации. В среднем цилиндре происходит дополнительное охлаждение. При достижении начальной температуры кристаллизации молочного жира начинается во всем объеме высокожирных сливок массовая кристаллизация глицеридов, которая сопровождается сменой фаз. В верхнем цилиндре происходит обработка кристаллизующегося продукта в результате чего формируется требуемая структура и консистенция масла. Температура масла, выходящего из верхнего цилиндра составляет 13–17 С.

    Продолжительность механической обработки в аппарате должна быть достаточной для кристаллизации глицеридов в количестве, необходимом для формирования структуры, обусловливающей в необходимой степени твердую и пластичную консистенцию масла. При преобладании в молочном жире высокоплавких глицеридов продолжительность обработки в зоне кристаллизации жира увеличивают по сравнению с жиром, в котором преобладают легкоплавкие глицериды. Так по данным ВНИИМСа требуемая продолжительность перемешивания сливок в зоне кристаллизации составляет летом 140–160 с, а зимой, когда в молочном жире содержится больше высокоплавких глицеридов и больше его может перейти в твердое состояние, – 180–200с.

    В случае получения масла твердой крошливой консистенции увеличвают продолжительность обработки продукта в зоне кристаллизации путем снижения производительности маслообразователя и понижают температуру масла на выходе из аппарата.

    При мягкой консистенции масла сокращают продолжительность обработки продукта в зоне кристаллизации путем увеличения производительности маслообразователя и повышают температуру масла на выходе из аппарата.

    Регулируют температуру масла на выходе из маслообразователя путем изменения расхода или температуры хладоносителя (рассола, ледяной воды), используемого для охлаждения, при постоянной производительности маслообразователя. Уменьшение количества хладоносителя или повышение его температуры приводит к повышению температуры продукта на выходе из аппарата. Увеличение подачи хладоносителя или снижение его температуры способствует снижению температуры продукта на выходе из маслообразователя.

    Современный трехцилиндровый маслообразователь позволяет получать 750—1000 кг масла в час В таком маслообразователе процессы охлаждения высокожирных сливок и механическая обработка продукта происходят в различных аппаратах, для чего маслообразователь дополнительно укомплектован специальным обработником.

    Для контроля правильности выбора режима термомеханической обработки и прогнозирования консистенции готового продукта определяют скорость отвердевания свежевыработанного масла и прирост температуры в монолите масла.

    Скорость отвердевания свежевыработанного масла выражают в секундах от момента отбора пробы на выходе из маслообразователя до прекращения деформации масла.

    Прирост температуры в монолите масла определяют по величине повышения температуры помещенного в тару (ящик) свежевыработанного продукта в течение 10 мин.

    Отвердевание пробы свежевыработанного масла в течение 30–70 с в летний период и 40–100 с в зимний, а также прирост температуры 1,5–2,5 ºС свидетельствуют о том, что процесс выработки масла проведен правильно и готовый продукт будет иметь нормальную консистенцию.

    Продолжительность отвердевания менее 30 с и значительный прирост температуры в монолите масла (3–5 ºС) указывает на продолжающуюся интенсивную кристаллизацию молочного жира в готовом продукте. Такое масло после стабилизации структуры имеет грубую, крошливую консистенцию. Причина – недостаточная термомеханическая обработка продукта в маслообразователе.

    Отвердевание более 70 с в летний период и 100 с в зимний, а также прирост температуры менее 1,5 ºС указывает на излишнюю обработку масла в маслоизготовителе и излишне мягкую консистенцию готового продукта.

    В пластинчатом маслообразователе можно проводить термомеханическую обработку высокожирных сливок более интенсивно. Он состоит из теплообменного аппарата (охладителя) и камеры для кристаллизации молочного жира и механической обработки продукта (рис. ).

    Охладитель имеет чередующиеся между собой продуктовые и охлаждающие пластины, выполненные в виде полой плиты. Пластины имеют отверстие в центре для прохода продукта, а также два отверстия по углам для входа и выхода хладоносителя. Внутри камер продуктовых пластин размещены диски-турбулизаторы с ребрами-ножами.

    Камера для кристаллизации представляет собой цилиндр, закрытый конусной насадкой и выходным патрубком. Внутри' камеры расположены отражатель и лопастная мешалка.

    В месте соединения конусной насадки с цилиндром установлена дисковая решетка. Внутри конусной насадки вращается крыльчатка.

    Высокожирные сливки подаются в камеру первой продуктовой пластины и по щели, образуемой поверхностью охлаждающей пластины и диском-турбулизатором, движутся к центру. Затем сливки проходят через центральное отверстие охлаждающей пластины и движутся к периферии камеры следующей продуктовой пластины, проходя последовательно весь охладитель.

    Охлажденные сливки поступают в камеру кристаллизации, где подвергаются интенсивной механической обработке. Кристаллизация молочного жира, начавшаяся в охладителе, продолжается в камере кристаллизации.

    При продавливании продукта через дисковую решетку разрушаются грубые кристаллические структуры молочного жира и под действием крыльчатки продукт выталкивается через патрубок.

    Пластинчатый маслообразователь входит в состав линии производительностью 1000 кг масла в 'час. Некоторые параметры термомеханической обработки высокожирных сливок в пластинчатом маслообразователе приведены в табл. .

    Основными параметрами термомеханической обработки высокожирных сливок на пластинчатом маслообразователе являются удельные затраты мощности или энергии на механическую обработку, продолжительность механической обработки и температура масла, выходящего из аппарата.

    Для получения масла, обладающего хорошей консистенцией, удельные затраты мощности составляют от 20 до 60 Вт/кг, Необходимую продолжительность механической обработки τ, с, высокожирных сливок в зависимости от удельной затраты мощности на механическую обработку N определяют по формуле: τ = 202,6—2,94 N.

    Конечная температура масла на выходе из аппарата в зависимости от времени года колеблется от 16,5 до 18,5 °С.

    В весенне-летний период для обеспечения достаточно твердой консистенции масла уменьшают удельные затраты мощности, не снижая производительности аппарата. Для этого снижают частоту вращения вала охладителя и вала обработника по сравнению с осенне-зимним периодом. Температуру продукта на выходе из аппарата при этом снижают на 0,5 С.

    Уменьшение удельных затрат энергии на механическую обработку способствует уменьшению степени отвердевания жира в высокожирных сливках во время их пребывания в аппарате и степени дисперсности отвердевших частиц жира, больше жира отвердевает в масле после выхода его из маслообразователя, в состоянии покоя, что способствует образованию кристаллизационной структуры, вследствие чего повышается твердость масла

    В осенне-зимний период для получения масла пластичной, мягкой консистенции удельные затраты энергии на механическую обработку продукта повышают путем увеличения частоты вращения вала охладителя и обработника, не снижая производительности аппарата. Повышают температуру продукта, выходящего из охладителя и обработника, на 0,5 °С.

    При увеличении удельных затрат энергии повышаются степень отвердевания жира в высокожирных сливках и степень дисперсности частиц твердого жира, меньше жира отвердевает в масле после выхода из аппарата в состоянии покоя, создаются благоприятные условия для образования коагуляционной структуры.

    Вакуум-маслообразователь (рис. ) состоит из вакуум-камеры и шнекового текстуратора. В состав вакуум-камеры входит трубопровод, заканчивающийся распылительной форсункой. Внутри камеры имеется лопастная мешалка. Масло со стенок снимается ножами лопастной мешалки Текстуратор представляет собой шнековый пресс и состоит из двух шнеков, вращающихся навстречу один другому, и конической насадки. Для отвода тепла, выделяющегося при механической обработке масла, текстуратор снабжен рубашкой, где циркулирует холодная вода.

    Высокожирные сливки температурой 70–75 °С под действием вакуума засасываются в камеру и, проходя через форсунку, распыляются. Сливки, попадая в камеру с глубоким вакуумом, оказываются перегретыми, вследствие чего вскипают, теряя 6–8 % влаги. Испарение сопровождается потерей значительного количества тепла, в результате чего каждая частица охлаждается до 8–3 °С. Происходят быстрое отвердение около 50 % жира, разрыв оболочек и агрегирование жировых комочков в масляные зерна.

    Масляное зерно направляется на шнеки текстуратора. Захваченное шнеками текстуратора масло уплотняется, продавливается через отверстия решеток и перемешивается крыльчатками, насаженными на концы шнеков. Из аппарата выходит пласт масла, который направляют на упаковку.

    Создан маслообразователь для получения масла из высокожирных сливок с охлаждением их в атмосфере азота в распыленном состоянии и последующей механической обработкой.

    Маслообразователи с вакуумным охлаждением и с охлаждением в атмосфере азота конструктивно оформляются одинаково. Различие состоит в том, что в первом случае из маслообразователя отсасывается воздух, а во втором – подается азот.

    ОСОБЕННОСТИ СТРУКТУРЫ МАСЛА РАЗЛИЧНЫХ СПОСОБОВ ПРОИЗВОДСТВА


    Характер структуры сливочного масла определяет консистенцию готового продукта, которая может быть хорошей пластичной или крошливой, слоистой, нетермоустойчивой. В формировании структуры сливочного масла участвуют вещества, находящиеся в различных агрегатных состояниях: твердом и жидком – жир, газообразном – воздух, коллоидном – белки.

    Австралийский ученый Кинг предложил модель структуры масла. Согласно этой модели в непрерывной жировой среде, которая представляет собой жидкую фракцию молочного жира, распределены капли влаги, не разрушенные жировые шарики и скопления из кристаллов молочного жира овальной формы (рис. ).

    На структуру, качество, хранимоспособность масла влияет состояние жира, однородность распределения и размер капель воды и пузырьков воздуха и пр.

    Молочный жир находится в масле в твердом кристаллическом состоянии и жидком.

    Кристаллический жир имеет мелкие кристаллы размером до 0,1 мкм или сростки-кристаллиты неправильной формы, а также упорядоченные кристаллиты – сфериты. Для структуры сливочного масла, выработанного способом сбивания сливок характерно наличие мелких шарообразных или иглоподобных кристаллов, для масла полученного способом преобразования высокожирных сливок – крупных сферолитов. Мелкие кристаллы (размером до 0,1 мкм), характерные для масла, полученного способом сбивания сливок, является результатом преимущественного формирования их внутри отдельных жировых шариков при физическом созревании сливок.

    Кристаллики и кристаллиты взаимосвязаны между собой в определенных участках или во всем объеме, образуя структуру, подобную кристаллическому каркасу. Эти связи могут быть очень слабыми, и тогда структура представлена в виде мелких, почти независимых друг от друга кристалликов и кристаллитов. Если они значительные, кристаллический жир пронизывает весь объем масла. К таким пространственным структурам дисперсных частиц применима теория физико-химической механики П.А. Ребиндера о коагуляционных и кристаллизационных структурах дисперсных системах.

    Коагуляционная или обратимая, тиксотропная структура обусловлена относительно слабыми межмолекулярными силами притяжения (Ван-дер-Ваальса – Лондона) между дисперсными частицами, разделенными в местах связи очень тонкими прослойками жидкой дисперсионной среды, и придает маслу нежную консистенцию и пластические свойства. Эта структура характеризуется низкой механической прочностью и обратимостью, то есть способна к самопроизвольному восстановлению в покое после механического разрушения.

    Кристаллизационная или необратимая, конденсационная структура образуется благодаря более прочным химическим связям, возникающим при непосредственном соприкосновении частиц друг с другом. Эти связи возникают обычно в состоянии покоя системы, чаще всего уже в готовом продукте. Такая структура лишена тиксотропных и пластично-вязких свойств. В случае преобладания такой структуры масло становится избыточно твердым и хрупким. Механическим воздействием кристаллизационная структура может быть необратимо разрушена и превратиться в коагуляционную.

    Масло хорошей консистенции представляет собой смешанную коагуляционно-кристаллизационную структуру с преобладанием свойств коагуляционной.

    При выработке масла способом сбивания сливок кристаллизация глицеридов происходит в процессе физического созревания сливок после быстрого их охлаждения, внутри отдельных жировых шариков, в течение длительного времени. В результате образуется много мелких кристаллов, что и определяет формирование мелкокристаллической структуры продукта. Кристаллизация глицеридов и формирование структуры в основном заканчивается в процессе выработки масла. Структура такого масла характеризуется как коагуляционно-кристаллизационная.

    При выработке масла в маслоизготовителях непрерывного действия условия формирования структуры аналогичны вышеизложенным. Однако, более интенсивное механическое воздействие на сливки в процессе их сбивания и обработки масляного зерна приводит к значительному разрушению жировых шариков и даже к частичному расплавлению ранее кристаллизовавшегося жира. Отличительной особенностью структуры такого масла по сравнению со структурой масла, выработанного в маслоизготовителях периодического действия, является более тонкое диспергирование плазмы и повышенное содержание газовой фазы.

    Таким образом, структура сливочного масла, выработанного способом сбивания сливок (независимо от используемого маслоизготовителя) представлена в основном жировыми микрозернами, состоящими из высоко- и среднеплавких глицеридов молочного жира. Промежутки между ними заполнены жидким жиром, состояние которого зависит от температуры и жирнокислотного состава. Это предопределяет пластичность масла и его термоустойчивость. Термоустойчивость такого масла хорошая.

    При выработке масла способом преобразования высокожирных сливок уже в начальный период обработки сливок в маслообразователе создаются условия, при которых разрушение жировой эмульсии преобладает над процессом кристаллизации. Быстрое охлаждение сливок обусловливает кристаллизацию высокоплавких глицеридов, образование твердого жира и повышение вязкости. При этом значительная часть жировых шариков разрушается раньше, чем в них закристаллизуются высоко- и особенно среднеплавкие глицериды. Это приводит к образованию жидкого жира усредненного состава. Кристаллизация глицеридов происходит в расплаве жира. При быстром охлаждении расплава возможно его переохлаждение, когда жир остается жидким при температурах ниже точки отвердевания части составляющих его глицеридов. Содержание твердого жира в таком масле будет меньше, чем в полученном способом сбивания сливок. Этим объясняется повышенная текучесть масла на выходе из маслообразователя. Кроме того, поскольку кристаллизация осуществляется из расплава жира, то при этом создаются условия для неограниченного роста кристаллов и формирования преимущественно кристаллизационной структуры вырабатываемого масла. Это оказывает влияние на температуру плавления жира, а так как последний является дисперсионной средой, то продукт будет более чувствителен к колебаниям температуры, нежели масло, полученное способом сбивания. Именно преобладанием кристаллизационной структуры можно объяснить пониженную термоустойчивость и повышенную способность жидкого жира к вытеканию для масла, выработанного способом преобразования высокожирных сливок.

    Регулирование параметров термомеханической обработки высокожирных сливок с целью получения мелкокристаллической коагуляционной структуры масла способствует повышению термоустойчивости масла и снижению вытекания свободного жидкого жира.

    Жидкий жир преобладает в масле. Он равномерно распределен в объеме продукта, образуя непрерывную дисперсионную среду, обеспечивая связность структуры и пластичную консистенцию. Чем больше объем кристаллического жира и мельче его кристаллики, тем больше его адсорбирующая поверхность, и тем лучше будет удерживаться жидкий жир. Располагаясь между отдельными элементами структуры масла жидкий жир выполняет роль «смазки». Недостаток жидкого жира является причиной хрупкой, крошливой консистенции масла, а избыток вызывает порок «мягкая консистенция». Для получения масла пластичной консистенции необходимо, чтобы образовалось достаточное количество свободного жидкого жира. С этой целью применяют ступенчатые режимы физического созревания.

    Вода находится в масле в свободном состоянии, однако часть воды пребывает в связанном состоянии и прочно удерживается на поверхности жировых агрегатов. Свободная вода служит растворителем для различных составных частей молока, переходящих в масло, и называется плазмой.

    Плазма, представляющая собой водный раствор белков, молочного сахара, минеральных веществ, витаминов и др., распределена в жидком жире в виде капель различного размера и является дисперсной фазой. Некоторая часть капель плазмы соединена тончайшими протоками, пронизывающими часть или всю массу монолита масла. В этом случае плазму можно рассматривать как дисперсионную среду в масле.

    Дисперсность плазмы влияет на консистенцию масла, стойкость его в хранении и зависит от способа производства масла. Размеры капель в масле, выработанном способом сбивания сливок на цилиндрическом маслоизготовителе составляют 10–25 мкм, на коническом и кубическом – 7–15 мкм, на маслоизготовителе непрерывного действия – 3–15 мкм, для масла, выработанного способом преобразования высокожирных сливок – 1–3 мкм.

    Дисперсность плазмы в масле характеризуют следующим образом: хорошая – все капли менее 10 мкм; удовлетворительная – большинство капель менее 10 мкм; плохая – значительное число капель больше 10 мкм, встречаются капли до 30 мкм и больше.

    Дисперсность плазмы в значительной степени зависит от способа производства масла (табл. ). В таблице приведены результаты исследований Ф.А. Вышемирского для сладкосливочного масла с массовой долей жира 82,5%.

    По данным Ф.А. Вышемирского наиболее тонко плазма диспергирована в масле, выработанном способом преобразования высокожирных сливок (ПВЖС), в котором средний размер капель плазмы составлял 2,88 мкм, при этом 61,5 % плазмы находилось в виде капель диаметром от 1 до 5 мкм (93–97 % общего количества капель). Для способа сбивания в маслоизготовителе непрерывного действия дисперсность плазмы ниже, чем для способа ПВЖС. При этом средний размер капель плазмы соответствовал 3,20 мкм, и только 40,6 % плазмы находилась в виде капель размером 1–5 мкм (90–94 % от общего количества капель). Для способа сбивания в маслоизготовителях периодического действия степень дисперсности плазмы самая низкая, средний диаметр капель плазмы 3,36 мкм, объем плазмы, находящейся в каплях диаметром 1–5 мкм – 38,5 % (88–93 % общего количества капель).
    Влияние способа производства на распределение плазмы в масле

    (по данным Ф.А, Вышемирского)

    Способ производства масла

    Средний размер капель плазмы, мкм

    Объем плазмы в каплях размером 1-5 мкм, %

    Количество капель плазмы размером 1-5 мкм, %

    Сбивание сливок:

    - в маслоизготовителях периодического действия

    - в маслоизготовителях непрерывного действия


    3,36
    3,20


    38,5
    40,6


    88-93
    90-94

    Преобразование высокожирных сливок

    2,88

    61,5

    93-97


    Дисперсность плазмы влияет на хранимоспособность продукта, так как она обусловливает протекание микробиологических и химических процессов в масле.

    Плазма является хорошей питательной средой для роста микроорганизмов, однако развитие бактерий возможно лишь в каплях размером более 10 мкм. В каплях меньших размеров бактерии практически не развиваются, что обусловлено их размерами: длина бактериальной клетки колеблется от 1 до 5 мкм, а ширина 0,5–1,0 мкм.

    При повышении дисперсности плазмы увеличивается суммарная поверхность контакта плазма–жир, и создаются условия для более интенсивного протекания химических процессов. Однако, плазма хорошего качества при отсутствии в ней солей тяжелых металлов (катализаторов окислительных процессов) обладает антиокислительными свойствами за счет растворенных в ней соединений, содержащих сульфгидрильные группы –SH, фосфолипидов, β–каротина и др. При высокой дисперсности такая плазма способствует повышению сохраняемости качества продукта. Содержание фосфолипидов выше в масле, выработанном способом ПВЖС, чем способом сбивания сливок.

    Таким образом, в масле, выработанном способом ПВЖС, вследствие более тонкого распределения плазмы и большей поверхности соприкосновения плазма-жир, химические процессы окисления могут протекать интенсивнее. Однако, высокое качество плазмы снижает интенсивность химической порчи. Микробиологические процессы при этом заторможены вследствие высокой дисперсности плазмы.

    В масле, выработанном способом сбивания сливок в маслоизготовителях периодического действия из-за более грубого распределения плазмы микробиологические процессы протекают интенсивнее, а химические – медленнее, чем в масле, выработанном способом ПВЖС. Поэтому порча его происходит в основном за счет микробиологических процессов.

    В масле, выработанном способом сбивания сливок в маслоизготовителях непрерывного действия могут одновременно развиваться микробиологические и химические процессы.

    Состав плазмы зависит от способа производства и является показателем степени дестабилизации эмульсии жира сливок при выработке масла (табл. ).

    Состав плазмы в зависимости от способа производства масла
    (по данным Ф.А. Вышемирского)


    Способ производства масла

    Массовая доля в плазме, %

    Степень деэмульгирования жира, %

    жира

    неповрежденных жировых шариков

    Сбивание сливок в маслоизготовителях периодического и непрерывного действия

    1,7-2,1

    0,15-0,40

    99,9

    Преобразование высокожирных сливок

    до 12,3

    до 2,15

    97,5-98,8


    В плазме масла, выработанного способом сбивания и характеризующегося высокой степенью деэмульгирования жира 99,9 %, жировых шариков значительно меньше, чем в масле, выработанном способом ПВЖС (степень деэмульгирования жира 97,5–98,8 %) и составляет соответственно 1,7-2,1 % и 0,15–0,40 %, в то время как для способа ПВЖС эти показатели достигают 12,3 % и 2,15 % соответственно.

    Газовая фаза присутствует в масле в виде пузырьков воздуха диаметром от 1 до 200 мкм. В основном газовая фаза находится в виде мелких пузырьков, меньшая часть ее растворена в жидком жире и плазме.

    Газовая фаза, содержащая до 20–21 % кислорода, оказывает влияние на качество масла, и прежде всего, на его консистенцию.

    В масле нормальной консистенции газовая фаза служит буфером (амортизатором) между отдельными структурными элементами. Кроме того, пузырьки воздуха, адсорбируя на своей поверхности жидкий жир, препятствуют его вытеканию из масла и тем самым способствуют стабилизации структуры продукта.

    Масло с повышенным содержанием воздуха имеет пониженную твердость, более рыхлую и хрупкую консистенцию, бледный цвет вследствие рассеяния света пузырьками воздуха. Чрезмерное увеличение в масле газовой фазы приводит к разрыхлению монолита, способствуя появлению порока «рыхлая консистенция», повышению окисляемости масла и стимулирует развитие аэробной микрофлоры.

    При недостатке газовой фазы повышается твердость и хрупкость масла, что может привести к появлению трещин в монолите масла – следствие порока «колющаяся консистенция» и «крошливость». Кроме того, чрезмерное снижение в масле газовой фазы, например при вакуумировании, может стать причиной появления порока «выделение капель жидкого жира». Объясняется это тем, что в нормально обработанном масле определенная часть жидкого жира адсорбируется на поверхности пузырьков воздуха, а при недостатке последних часть жидкого жира остается свободной и может выделяться в виде капель.

    Содержание газовой фазы в масле непостоянно, колеблется от 0,5 до 12 см3 на 100г продукта, и зависит от способа производства масла.

    Способ производства масла

    Объемная доля воздуха, см3 на 100 г масла

    Сбивание сливок:

    в маслоизготовителях периодического действия

    в маслоизготовителях непрерывного действия


    2 – 3

    4 – 12

    Преобразование высокожирных сливок

    0,5 – 1,0


    Наибольшим содержанием газовой фазы отличается масло, выработанное способом сбивания в маслоизготовителях непрерывного действия (4–12 см3/100 г). При этом способе производства содержание воздуха в масле регулируют изменением параметров сбивания сливок и обработки масляного зерна, а также вакуумированием масла во время его обработки. Обработка масла под вакуумом способствует снижению в нем воздуха и уменьшению неоднородности цвета. При этом масло приобретает плотную структуру. Чрезмерная обработка масла под вакуумом может привести к выделению жидкого жира.

    Меньше всего содержится газовой фазы в масле, выработанном способом преобразования высокожирных сливок (0,5–1,0 см3/100 г). Такое масло имеет повышенную плотность, а порок «рыхлая консистенция» практически не встречается.

    Промежуточное положение по содержанию газовой фазы занимает масло, выработанное способом сбивания в маслоизготовителях периодического действия (2–3 см3/100 г). При этом следует учитывать, что неравномерная вработка воздуха приводит к получению масла неоднородной структуры и цвета. В местах скопления газовой фазы такое масло имеет более бледную окраску в связи с рассеиванием света пузырьками воздуха.

    Газовая фаза влияет на сохраняемость качества сливочного масла. Нормальное содержание воздуха в продукте составляет 2–3 см3/100 г.

    Структурно-механические характеристики сливочного масла различных способов производства. К ним относятся твердость, модуль упругости, вязкость, термоустойчивость, вытекание жидкого жира и др.

    Твердость сливочного масла характеризует способность его структуры оказывать сопротивление внедрению в его толщу инденторов различной формы (конуса, цилиндра, шара и др.) или резанию проволокой, пластиной. Наиболее распространенным является определение твердости масла по его сопротивлению резанию проволокой.

    Модуль упругости (Е) при испытаниях на сжатие цилиндрических образцов масла рассчитывают по формуле:



    где y – напряжение, соответствующее пределу упругости , н/м2;  – относительная деформация образца.

    Вытекание жидкого жира характеризует способность структуры сливочного масла удерживать жидкий жир. Пробу масла в форме кубика (длина ребра 3,5 см) помещают на 5 слоев фильтровальной бумаги, уложенной в чашку Петри. Подготовленные пробы масла помещают в термостат при 25ºС, выдерживают 30 мин и осторожно удаляют с бумаги остатки масла.

    Массу вытекшего жира определяют по формуле:



    где a, b, c – масса чашки Петри с фильтровальной бумагой, с фильтровальной бумагой и кубиком масла, с фильтровальной бумагой, пропитанной вытекшим жиром, соответственно.

    Термоустойчивость сливочного масла характеризует его способность сохранять форму при температуре выше комнатной и определяется термостатированием образца масла заданной формы (цилиндра диаметром и высотой 20 мм) при температуре 30±1ºС в течение 2 ч. Мерой термоустойчивости служит отношение начального диаметра исследуемого образца масла к среднему диаметру основания образца после термостатирования.

    Шкала, характеризующая термоустойчивость сливочного масла, приведена ниже.

    Термоустойчивость

    Показатель (коэффициент)

    термоустойчивости

    Хорошая

    1,0–0,86

    Удовлетворительная

    0,85–0,70

    Неудовлетворительная

    менее 0,7


    Сотрудниками ВНИИМС проведены исследования структуры сливочного масла с различной массовой долей жира, выработанного способом преобразования высокожирных сливок (ПВЖС) и способом сбивания сливок (СС). Масло вырабатывалось по массовой доле жира с шагом 10 % и исследовались по следующим показателям структуры: массовая доля жира в плазме, количество эмульгированного жира, вытекание жидкого жира, термоустойчивость, твердость, вязкость практически ненарушенной структуры, модуль упругости при сжатии (табл. ).

    Содержание жира в плазме и количество эмульгированного жира характеризуют законченность обращения фаз при выработке масла. Снижение массовой доли жира в масле в пределах 10 % приводит к увеличению содержания эмульгированного жира, причет для масла, выработанного способом ПВЖС, эта тенденция выражена значительнее, чем для масла, выработанная способом СС. Это объясняется меньшей завершенностью процесса формирования структуры масла способа ПВЖС в маслообразователе. Содержание жира в плазме масла уменьшается при снижении массовой доли жира в продукте. Численные значения содержания жира в плазме масла способом ПВЖС выше, чем способа СС (в среднем в 4-5 раз), что объясняется уменьшением степени дестабилизации жировой эмульсии масла, полученного способом ПВЖС.

    Вытекание свободного жира характеризует состояние жира и его связь с другими компонентами и имеет тенденцию к снижению при уменьшении массовой доли жира в продукте на 10 %. Для масла, выработанного способом ПВЖС этот показатель снижается на 1-2,5 %, а для способа СС – в среднем на 33 %. Неодинаковая способность масла удерживать свободный жир объясняется различиями в характере кристаллической структуры отвердевшего жира, образующего непрерывную фазу и степенью прерывистости капиллярной сетки жидкого жира. Масло, выработанное способом ПВЖС, отличается лучшей дисперсностью плазмы, что свидетельствует о более развитой капиллярной сетке, заполненной жидким жиром. В масле, выработанном способом СС, большее количество капилляров жира, изолированных друг от друга и не выходящих к поверхности монолита, что затрудняет его вытекание.

    Термоустойчивость характеризует способность масла сохранять форму при повышенных температурах (более 30 оС). Вне зависимости от способа производства термоустойчивость повышается при снижении массовой доли жира в продукте. Это объясняется ростом массовой доли СОМО и соответственно увеличением значимости его в формировании структуры. Термоустойчивость масла, выработанного способом ПВЖС ниже (в среднем на 5-10 %), чем термоустойчивость, полученного способом СС. Это является следствием различия характера их структуры.

    Твердость масла, выработанного способом ПВЖС, значительно выше, чем полученного способом СС. Снижение твердости при уменьшении массовой доли жира в масле независимо от способа производства обусловлено разрыхлением его структуры вследствие повышенного содержания воздуха и ухудшения дисперсности компонентов.

    Вязкость практически неразрушенной структуры снижается при уменьшении массовой доли жира в масле независимо от способа производства, что обусловлено ослаблением взаимосвязи компонентов продукта (жир/влага/ /СОМО). Вязкость практически неразрушенной структуры масла, выработанного способом ПВЖС, значительно выше (в 1,5-2 раза), чем полученного способом СС, что свидетельствует о различии в структурой сетке масла разных способов производства.

    Модуль упругости при снижении массовой доли жира в масле уменьшается вне зависимости от способа производства. Однако, численные значения модуля упругости масла способом ПВЖС в 2,1-2,8 раза выше, чем способа СС. Это объясняется преимущественно кристаллизационной структурой масла, выработанного способом ПВЖС, и преобладанием коагуляционной структуры в масле, полученном способом сбивания сливок.

    1   ...   30   31   32   33   34   35   36   37   ...   49


    написать администратору сайта