Курс лекций. Курс лекций автоматическое регулирование. Тема 7
Скачать 483.97 Kb.
|
https://findout.su/2x5610.html Тема 2.7. Автоматическое регулирование температур в системах СЭУ. Устройство и принцип действия терморегуляторов зарубежного производства. Регулирование температур в судовых дизельных установках осуществляется в системах охлаждения и смазки. Известно, что система охлаждения отбирает от двигателя часть тепла, полученного в результате сгорания топлива. Этот фактор оказывает влияние на рабочие и эксплуатационные показатели двигателя: эффективную мощность, расход топлива и степень износа. Терморегулятор Z-40 фирмы «Келле» Такие терморегуляторы установлены для автоматического регулирования температуры масла и охлаждающей воды в главных двигателях «Семт Пилстик». Регулятор (рис. 3.16) непрямого действия, с двумя гидравлическими сервомоторами. Регулирующий орган выполнен в виде вращающейся заслонки.
Чувствительный элемент 1 дилатометрического типа. Инваровый стержень свободным концом соединен посредством коромысла 4 с клапаном 5 воздушного реле. Клапан дросселирует проходное сечение трубопровода 6. При работе шестеренного насоса 7, имеющего независимый электропривод, воздух будет подсасываться из атмосферы через фильтр 2 по трубопроводу 6, а масло — из емкости 16 по трубопроводу 10. Количественное соотношение воздуха и масла зависит от положения клапана 5. Шестеренный насос 12 засасывает воздух через воздушный клапан 9, а масло через трубопровод 11 из масляной ванны 15. Соотношение масло - воздух также будет зависеть от величины открытия клапана 9, шток которого соединен со свободным концом спиральной трубки 8, выполненной по типу манометрической. При равновесном состоянии регулятора клапаны 5 и 9 открыты примерно на половину хода, при котором в смеси воздуха будет значительно больше, чем масла. Воздух будет выходить через калиброванные трубки 13, 20, а масло поступит в цилиндры сервомоторов 14, 18 и создаст одинаковое давление в их надпоршневых полостях. Поршни сервомоторов будут находиться в покое. С увеличением температуры воды, выходящей из двигателя, возникает управляющий сигнал и система переходит в динамическое состояние. Вследствие удлинения наружной трубки инваровый стержень повернет рычаг 4 вокруг опоры 3 и клапан 5 прикроет доступ воздуха в трубопровод 6. Насос 7, продолжая работать, начнет засасывать масло из внутренней емкости и нагнетать его в верхнюю полость сервомотора 18, поршень которого пойдет вниз, и с помощью стального тросика 19 и шкива 24 (конец тросика закреплен на шкиве) повернет вокруг оси 21 заслонку 22. Вода из двигателя пойдет в холодильник. Поршень сервомотора 14 не препятствует перемещению поршня сервомо тора 18, так как при увеличении давления в нагнетательной полости насоса 7 спиральная трубка 8 будет выпрямляться и полностью откроет клапан 9. В результате давление масла в сервомоторе 14 снизится и его поршень сможет подняться. В регуляторе имеется изодромная обратная связь, принцип действия которой основан на изменении уровней масла в емкостях 15 и 16, являющихся сообщающимися сосудами. Перемещение вниз поршня сервомотора 18 вызовет понижение уровня масла в емкости 16 и, следовательно, изменение величины разрежения в трубке 10. Регулятор рассчитан так, что равновесное состояние наступает только при определенной величине разрежения, соответствующей одинаковому уровню масла в емкостях 15 и 16. Скорость перетекания масла из одной емкости в другую устанавливается регулировочной иглой 17. Благодаря наличию давления в цилиндрах сервомоторов как в равновесном, так и в динамическом состоянии приводной тросик 19 всегда натянут и регулировочная заслонка не имеет возможности произвольного смещения. Ось 21 заслонки имеет специальное уплотнение, выдерживающее температуру до 120° . При выходе из строя автоматики заслонка поворачивается рукояткой 23. На шкиве 24 предусмотрен указатель положения заслонки. Регуляторы фирмы «Волтен». Такие регуляторы применяются для регулирования температуры воды и масла и выпускаются с различными диаметрами заслонки 2 (130-265 мм). Чувствительным элементом регулятора является латунный патрон 10, заполненный смесью воска и красномедной пыли. При увеличении температуры регулируемой жидкости, проходящей через регулятор, происходит плавление воска, что приводит к увеличению объема смеси и перемещению мембраны патрона. Перемещение мембраны передается штоку 6 измерителя, который через крестовины поворачивает рычаги 3 вокруг их опоры против часовой стрелки. Оба рычага своими правыми концами воз действуют на два штока 4, верхние концы которых упираются в выступы поворотной заслонки 2 и вызывают ее перемещение вокруг оси 8. В этом случае заслонка перекроет выход жидкости на перепуск и откроет проход на охладитель. Если по каким-либо причинам (например, перекос или попадание посторонних частиц) поворот заслонки в корпусе затруднен, то штоки 4, сжимая передающие пружины 5, своими верхними концами зайдут в отверстия выступов заслонки. Обратный ход заслонки (при уменьшении температуры) происходит под действием пружины 9. Кронштейн 7, в который пружина 9 упирается своим нижним концом, посредством бугеля винтами жестко соединен с осью 8. Если поворачивать ось 8 (ручное регулирование), то через патрон и рычаг 3 будет поворачиваться и заслонка 2. Для этой цели наружный конец оси прикреплен к рукоятке, поворачивая которую можно вручную перемещать заслонку. Перемещение рукоятки ограничено упорами, чтобы при ее повороте не смогло перекрыться входное отверстие в корпусе регулятора. По торцам корпуса регулятора установлены две крышки, обеспечивающие герметичность корпуса. Терморегуляторы больших размеров снабжаются двумя и более заслонками,
Тема 2.8. Автоматическое регулирование температур в системах СЭУ. Устройство и принцип действия терморегуляторов отечественного производства. Терморегулятор ТПД-60. Регулятор прямого действия, двухклапанный, с диаметром условного прохода 60 мм, применяется в системах охлаждения двигателей мощностью до 600 кВт. Чувствительный элемент 2 регулятора (рис. 3.15) состоит из двух сильфонов 8 (рис. 3.15,б), двух задающих пружин 5 и регулировочных винтов 4 и 7. Регулирующий орган выполнен в виде двух клапанов 1 и 3, жестко связанных с днищами сильфонов. Сильфоны нижней частью припаяны к неподвижному основанию 6. В качестве заполнителя применяют: при температуре измеряемой окружающей среды 50-60 ° С этиловый эфир, при 60—70 ° С ацетон и при 70—85 ° С этиловый спирт. Охлаждающая вода из двигателя поступает в корпус регулятора, омывает чувствительный элемент 2, затем через верхний клапан проходит в холодильник, а через нижний на перепуск. Если температура воды низкая, то оба сильфона окажутся сжатыми, при этом верхний клапан 3 будет закрыт, а нижний 1 открыт. Охлаждающая вода пойдет на перепуск, сокращая время прогрева двигателя. По мере нагревания воды сильфоны будут разжиматься. Нижний клапан начнет закрываться, а верхний открываться. Часть воды пойдет на перепуск, а часть — в холодильник. Перераспределение соотношения потоков воды на перепуск и в холодильник зависит от настройки регулятора и температуры воды, выходящей из двигателя.
Регуляторы ТПД-60 выпускаются заводом отрегулированными на заданную температуру и допускают перестройку до 10° С в сторону увеличения и до 6° С в сторону понижения температуры охлаждающей воды. Перестройка осуществляется изменением натяга пружин 5 с помощью винтов 4 и 7. Терморегулятор РТНД. Регуляторы серийно выпускаются отечественной промышленностью и широко применяются для регулирования температуры воды и масла главных двигателей БМЗ типа ДКРН. Регулятор непрямого действия, с мембранным пневматическим сервомотором, с жесткой обратной связью, относится к группе П-регуляторов. Степень неравномерности может задаваться в пределах 6—12°С, диапазон настройки 36—110° С, условный проход регулирующего органа 80—350 мм. Принцип действия регулятора (рис. 3.20) основан на преобразовании температуры регулируемой среды в импульсное давление воздуха, которое в конечном итоге управляет положением регулирующего органа. Чувствительный элемент жидкостно-объемного типа состоит из термобаллона 1 и сильфона 3. Шток 2 контактно соединен со штоком 5. При повышении температуры регулируемой среды сильфон будет сжиматься и после выбирания настроечного зазора (s) переместит вверх шток 5 вместе с рычагом (в) измерителя, при этом усилие пружины 7 уменьшится, зазор между мембраной 8 и соплом трубки 9 возрастет и соответственно увеличится количество воздуха, стравливаемого в атмосферу. Это приведет к снижению импульсного давления в камере под мембраной 8 и в камере слева от мембраны 12 усилителя (позиционера) 11. Мембрана 12 прогнется и переместит золотник 10 усилителя влево, ослабляя одновременно пружину 13 толкателя 14 жесткой обратной связи. Силовой воздух из верхней полости сервомотора 15 будет стравливаться в атмосферу через канал, открытый золотником усилителя, и под действием пружины 16 шток сервомотора переместится вверх, увеличивая через клапан 18 поступление регулируемой среды в холодильник и уменьшая на перепуск. .
Сервомотор остановится тогда, когда усилие сжатия пружины 13 со стороны кулачка 17 уравновесится усилием на мембране 12. Влияние обратной связи оказывается в следующем. Когда шток сервомотора движется вверх, натяжение пружины 13 под действием толкателя 14 уменьшается. Поэтому при неизменном импульсном давлении величина давления силового воздуха на мембрану сервомотора будет тем больше, чем круче профиль кулачка 17 обратной связи (тем больше неравномерность). Крутизну кулачка можно регулировать установочными болтами. Воздух в регулятор подается под давлением 0,4 МПа (4 кгс/см2), а давление импульсного воздуха составляет 0,02—0,1 МПа (0,2—1 кгс/см2). Пружина 4 является возвратной, она растягивает сильфон при понижении температуры и через угловую гайку перемещает рычаг 6 в обратном направлении. Настройку на требуемую температуру регулирования производят вращением винтового штока 5, положение которого (величина зазора s) определяет температуру начала страгивания регулирующего органа из нижнего состояния, когда поток на холодильник закрыт. Значение температуры начала страгивания указывается стрелкой указателя настройки. Аварийно-предупредительная сигнализация (АПС) обеспечивает контроль над следующими параметрами: давлением масла перед двигателем, температурой масла после двигателя, температурой пресной охлаждающей воды на выходе из двигателя и уровнем топлива в расходной цистерне. Принцип действия: На масленом трубопроводе установлены сифонные датчики реле минимального давления и температурного реле, на водяном - датчики температурного реле, а в расходной цистерне - реле уровня. Каждая реле сблокировано с двумя лампами (зелёной и красной) и ревуном. Действие системы АПС заключается в следующем. При номинальных значениях контролируемых параметров микровыключатели и их контакты находятся в разомкнутом состоянии; горят зелёные лампы. При срабатывании любого реле его сильфон воздействует на микровыключатель, который замкнёт контакт 18 и цепь электромагнита. В результате этого замкнётся контакт 3, что вызовет срабатывание реле, замыкание контакта 10 и подачу звукового сигнала ревуном и зуммером. Одновременно с этим контакт 4 переключает питание с зелёной лампы на красную. Зуммер может устанавливается на ЦПУ, в штурманской рубки или в каюте старшего механика. Вместе с зуммером устанавливается красная лампа 7, которая зажигается при замыкании цепи звуковой сигнализации. Для отключения звуковой сигнализации служит выключатель 11. Питание системы АПС осуществляется в основном от судовой электросети, при помощи выключателя 1. Устройство системы АПС принципиально не отличается от системы автоматической защиты, поэтому они часто объединяются между собой через промежуточное реле
1 Выключатель; 2 Цепь электромагнита; 3 Контакт; 4 Контакт; 5 Зелёная лампа; 6 Красная лампа; 7 Красная лампа зуммера; 8 Зуммер; 9 Ревун; 10 Контакт; 11 Выключатель; 12 Реле; 13 Реле уровня топлива; 14 Температурное реле воды; 15 Температурное реле масла; 16 Сильфонные датчики реле минимального; давления; 17 Микровыключатель; 18 Контакт В заключение рассмотрим структурную схему системы централизованного автоматического контроля и сигнализации, приведенную на рис. 3.25. Рис. 3.25 Значения параметров, измеренные датчиком, поступают в преобразователи 1, где они превращаются в унифицированные электрические сигналы. Последние поступают на обегающее устройство 2, поочередно соединяются с усилителем 3 и далее идут в аналого-цифровой преобразователь 4 на кодирование. В сравнивающем устройстве 6 полученное значение параметра сравнивается с заданным, которое хранится в блоке памяти 5. В случае отклонения параметра от заданного значения включаются в действие печатающее устройство аварийных параметров 10, а также световая И и звуковая 12 сигнализации. Мгновенная индикация текущих значений параметров получается на табло 9 с помощью устройства вызова 8 («Адресная панель»). Печатающее устройство 7 по заданной временной программе регистрирует выделенную группу параметров на бумаге. Тема 2.10. Системы автоматической защиты дизельных установок. Конечным действием системы защиты является выключение подачи топлива для остановки двигателя. Как правило, защита срабатывает: по частоте вращения; давлению масла; по давлению охлаждающей воды. Система защиты объединяется с предупредительной сигнализацией через промежуточное реле времени. При достижении параметром предельного значения включаются сигнализация и реле времени, затем срабатывает защита, и двигатель останавливается. Рассмотрим некоторые устройства защиты. Автомат остановки (рис. 3.26) дизеля ЗД-100 предназначен для остановки двигателя, когда частота вращения достигает 940 - 960 об/мин. Автомат состоит из корпуса 1, груза 2, пальца 3, пружины 4, скобы 5, регулировочных прокладок 6 и крепежных деталей. Фланцем 7 автомат крепится к торцу распределительного вала двигателя. Подковообразный груз 2 прижимается пружиной и скобой к корпусу агрегата. При увеличении частоты вращения вала двигателя выше допустимого значения центробежная сила груза преодолевает усилие пружины. Груз отходит от оси вращения (показано штрихпунктирной линией) и через рычаг воздействует на тягу, связанную с защелкой выключения топливных насосов.
Для аварийной остановки двигателя ЗД-100 при понижении давления смазочного масла применена релейная ступенчатая система защиты с выдержкой по времени. В случае понижения давления масла до 0,1 МПа (1 кгс/см2) включается аварийно-предупредительный сигнал. При дальнейшем понижении давления 0,06 МПа (0,6 кгс/см2) отключаются нагрузка с генератора и гребного электродвигателя (выключением возбуждения) и левый ряд топливных насосов с помощью пневматического сервомотора. Одновременно снижается частота вращения двигателя до значения, соответствующего режиму холостого хода. При падении давления масла до 0,03 МПа (0,3 кгс/см2) срабатывает выключатель топлива, схема которого приводится на рис. 3.27. Автомат остановки дизеля ЗД-100 по давлению смазочного масла состоит из цилиндрического корпуса 1, в котором находятся воздушный поршень 2 и масляный поршень 5. Пружина 4, расположенная на общем штоке, стремится удержать оба поршня в крайнем правом положении. В крышке 7 корпуса имеется отверстие 6, через которое полость а соединена с главной масляной магистралью двигателя. При допускаемом давлении масла в системе оба поршня оказываются в крайнем левом положении. При падении давления масла до 0,03 МПа (0,3 кгс/см2) под действием пружины поршни переместятся вправо и шток, связанный с рейками топливных насосов, поставит их в положение нулевой подачи. Воздушный поршень 2 работает только в пусковой период, когда требуется удерживать шток в левом положении для обеспечения подачи топлива. Это достигается автоматически поступлением сжатого воздуха через клапан 3 в полость б при пуске двигателя. Воздух действует на поршень 2 и отводит шток влево. Невозвратный шариковый клапан препятствует выпуску воздуха из полости б сразу после пуска двигателя, так как давление масла может быть еще недостаточным. Стравливание воздуха происходит постепенно и только через неплотности. Этот процесс продолжается в течение какого-то времени, за которое давление масла достигает нормальной величины. Масло, просочившееся в рабочую полость поршня 5, удаляется через отверстие 8, которое одновременно является декомпрессионным. Принципиальная схема комбинированного защитного реле приведена на рис. 3.28. На корпусе 4 расположены сильфоны 6 и 10. Сильфон 6 является манометрическим датчиком системы смазки двигателя, а сильфон 10 вместе с термобаллоном 9 - температурным датчиком системы охлаждения. Реле работает следующим образом. При номинальном значении обоих контролируемых параметров система находится в положении, изображенном на схеме. Верхнее гнездо двухседельного клапана 1 открыто, и топливо поступает в двигатель. Если в главной масляной магистрали давление понизится, то под действием пружины 7 сильфон 6 будет удлиняться и потянет за собой шток 5, который нижней частью повернет рычаг 12 по часовой стрелке относительно шарнирной опоры. Защелка 13 освободится, под действием пружины 2 шток клапана опустится и тарелкой 14 перекроет подачу топлива к двигателю, одновременно открывая тарелкой 75 путь топливу на перепуск.
|