Тема 1. История развития медицинской генетики. Тема История развития медицинской генетики
Скачать 0.56 Mb.
|
1 Тема 1. История развития медицинской генетики Фундаментальными свойствами живой природы, отличающими ее от неживой материи, являются способность к размножению и наследственность, которая заключается в том, что особи любых видов рождают только себе подобных и их потомки, в среднем, более похожи на своих родственников, чем на других представителей того же вида. При этом каждый вид характеризуется определенным уровнем изменчивости, и даже братья и сестры никогда не являются точными копиями друг друга и своих родителей. Генетика - это наука о наследственности и изменчивости. Как любая другая биологическая наука генетика состоит из общих и частных разделов. Общие разделы посвящены изучению материальных основ наследственности и изменчивости. Они включают анализ вещества наследственности, которым являются молекулы ДНК, изучение способа упаковки генетического материала в клетках и его наследственной передачи в ряду поколений, структуры и мутаций генов, типов наследования, основных информационных процессов, а также многие другие вопросы. В частных разделах генетики исследуются особенности проявления общих теоретических закономерностей у разных видов организмов. Среди них ведущее положение занимает генетика человека. Те ее направления, которые посвящены патологии человека, являются предметом медицинской генетики. Основной целью медицинской генетики является изучение роли генетических составляющих в этиологии и патогенезе различных заболеваний человека. Эти болезни делятся на два класса: собственно, наследственные болезни, куда входят хромосомные и генные заболевания, и болезни с наследственной предрасположенностью, которые называют мультифакториальными заболеваниями. Хромосомными являются болезни, вызванные нарушением числа, либо структуры хромосом. Генные болезни обусловлены присутствием мутаций в генах. Моногеннными называются болезни, обусловленные присутствием мутаций в одном гене. В этиологии мультифакториальных заболеваний наряду с действием неблагоприятных внешних факторов существенное влияние оказывают состояния не одного, а многих генов. Количество этих генов, формирующих наследственную предрасположенность к заболеванию, иногда исчисляется десятками или даже сотнями. К мультифакториальным относятся большинство наиболее распространенных болезней человека. В задачи медицинской генетики входят: диагностика наследственных заболеваний, анализ их распространенности в различных популяциях и этнических группах, медико-генетическое консультирование семей больных, профилактика наследственных заболеваний на базе пренатальной (дородовой) диагностики, изучение молекулярно- генетических основ этиологии и патогенеза наследственных заболеваний, 2 выявление генетических факторов риска мультифакториальных заболеваний. В последние десятилетия произошел огромный прогресс в области медицинской генетики, значение которого трудно переоценить. Основой для этого послужили успехи в области молекулярной генетики, завершившиеся расшифровкой структуры генома человека, идентификацией всех его генов и определением молекулярной природы подавляющего большинства белков. В настоящее время происходит интенсивное изучение ассоциации различных генов человека с моногенными и мультифакториальными заболеваниями. Эти исследования являются основой для планомерной разработки совместно со специалистами различных медицинских профилей новых патогенетических и этиологических методов лечения наследственных заболеваний, а также предупреждения развития тех заболеваний, к которым у человека имеется генетическая склонность. Для эффективного внедрения в клинику этих достижений необходимо, чтобы каждый врач был знаком с основными законами наследственной передачи признаков и владел навыками их практического использования. Выявить больного с наследственной патологией, определить ее характер и направить в соответствующий центр для оказания специализированной медико-генетической помощи – вот те минимальные задачи, которые должен решать любой врач и, в первую очередь, участковый. Среди биологических дисциплин генетика занимает особое положение. Она изучает универсальные для всех живых существ законы наследственности и изменчивости, раскрывая сущность того, каким образом любая живая форма воспроизводит себя в следующих поколениях. Генетика человека не только изучает закономерности наследственности и изменчивости у человека на всех уровнях его организации и сосуществования (молекулярном, клеточном, организменном, популяционном), но и стремится найти способы управления ими. Днем рождения генетики как науки принято считать 1900 год, когда три ботаника: голландец Ганс де Фриз, немец К.Корренс и австриец К. Чермак независимо друг от друга подтвердили важнейшие закономерности наследования признаков в потомстве, установленные за 35 лет до них чешским естествоиспытателем Г. Менделем. 3 Историю генетики условно можно подразделить на три основных эпохи: 1. Эпоха классической генетики (1900 -1930 годы). В этот период была создана теория гена, хромосомная теория наследственности, разработано учение о взаимодействие генов, фенотипе и генотипе. 2. Эпоха неоклассической генетики (1930 - 1953 годы). В этот период была открыта возможность искусственного получения изменений в генах и хромосомах (экспериментальный мутагенез); обнаружено, что ген – это сложная система, дробимая на части; обоснованы принципы генетики популяций и эволюционной генетики; создана биохимическая генетика и доказано, что молекулы ДНК являются основой для записи генетической информации. 3. Эпоха синтетической генетики (с 1953 года по настоящее время). В этот период была раскрыта структура ДНК; показана ее генетическая значимость; установлено точное число хромосом у человека; возникла новая дисциплина - клиническая цитогенетика; получила дальнейшее развитие теория гена и мутаций; получены новые данные в области биохимической, эволюционной, экологической, иммунологической, онкологической генетики; создана технология рекомбинантных ДНК (генная инженерия). Биологические свойства человека в этот период становятся центральным объектом генетических исследований. Их объединение с молекулярной генетикой и молекулярной медициной обеспечило синтетический подход к проблеме наследственности. Современная генетика тесно взаимодействует с фундаментальными науками – физикой, химией, математикой, биологией, экологией и другими науками. Благодаря этой взаимосвязи в середине прошлого века появились такие самостоятельные специализированные разделы генетики, как генетика человека, популяционная генетика, цитогенетика, иммуногенетика, онкогенетика, фармакогенетика. Относительно недавно в обиход нашей жизни стали входить такие понятия и термины, как геном, молекулярная цитогенетика, экологическая генетика, молекулярная медицина. Медицинская генетика является составной частью генетики человека. Она изучает закономерности наследственности и изменчивости с точки зрения патологии человека. Особый раздел медицинской генетики составляет клиническая генетика, исследующая вопросы патогенеза, клиники, диагностики, профилактики и лечения наследственных болезней. Задачами медицинской генетики являются: 1) Изучение роли генетических и внешних факторов в развитии наследственной патологии. 2) Изучение характера наследования и проявления патологических генов. 4 3) Разработка принципов классификации, диагностики, и профилактики наследственных заболеваний. 4) Изучение характера наследственной патологии на молекулярном, клеточном, организменном и популяционном уровне. 5) Выявление распространения наследственных болезней и врожденных пороков развития. 6) Совершенствование методов генной инженерии с целью генотерапии и получения новых лекарственных веществ. 7) Широкое и повсеместное внедрение медико-генетического консультирования. 8) Разработка методов профилактики наследственных болезней. Человек, как объект генетических исследований, чрезвычайно сложен. Это связано, в первую очередь, с особенностями его генетической организации и сложным характером экспрессии многих признаков. Кроме того, у человека, по сравнению с другими представителями животного и растительного мира, достаточно большой геном, состоящий из около 35 тысяч генов, имеющих около 3,3 млрд. пар нуклеотидов. Общая длина молекул ДНК в каждой клетке человека составляет около двух метров. Из общего количества генов человека в настоящее время идентифицированы более 20 тысяч и около их половины картированы на индивидуальных хромосомах. |