Главная страница
Навигация по странице:

  • Дисбактериоз (дисбиоз)

  • Тема Введение в микробиологию


    Скачать 246.93 Kb.
    НазваниеТема Введение в микробиологию
    Дата27.02.2019
    Размер246.93 Kb.
    Формат файлаdoc
    Имя файла634594-www.libfox.ru.doc
    ТипДокументы
    #69003
    страница4 из 5
    1   2   3   4   5

    Нормальная микрофлора человека – это совокупность множества микробиоценозов, характеризующихся определенными взаимосвязями и местом обитания.

    В организме человека в соответствии с условиями обитания формируются биотопы с определенными микробиоценозами. Любой микробиоценоз – это сообщество микроорганизмов, существующее как единое целое, связанное цепями питания и микроэкологией.

    Виды нормальной микрофлоры:

    1) 

    резидентная

    – постоянная, характерна для данного вида. Количество характерных видов относительно невелико и относительно стабильно, хотя численно они всегда представлены наиболее обильно. Резидентная микрофлора обнаруживается в определенных местах тела человека, при этом важным фактором является его возраст;

    2) 

    транзиторная

    – временно попавшая, не характерная для данного биотопа; она активно не размножается, поэтому, хотя видовой состав транзиторных микроорганизмов и разнообразен, но они не являются многочисленными. Характерной особенностью этого вида микрофлоры является то, что, как правило, попадая на кожу или слизистые оболочки из окружающей среды, не вызывает заболеваний и не обитает постоянно на поверхностях тела человека. Она представлена сапрофитными условно-патогенными микроорганизмами, которые обитают на коже или слизистых оболочках в течение нескольких часов, дней или недель. Присутствие транзиторной микрофлоры определяется не только поступлением микроорганизмов из окружающей среды, но и состоянием иммунной системы организма хозяина, составом постоянной нормальной микрофлоры. Состав транзиторной микрофлоры не является постоянным и зависит от возраста, внешней среды, условий труда, рациона питания, перенесенных заболеваний, травм и стрессовых ситуаций.

    Нормальная микрофлора формируется с рождения, и в это время на ее формирование оказывает влияние микрофлора матери и внутрибольничной среды, характер вскармливания. Заселение бактериями организма продолжается на протяжении всей его жизни. При этом качественный и количественный состав нормальной микрофлоры регулируется сложными антагонистическими и синергическими отношениями между отдельными ее представителями в составе биоценозов. Микробное обсеменение характерно для всех систем, имеющих контакты с окружающей средой. Тем не менее в норме многие ткани и органы здорового человека стерильны, в частности кровь, ликвор, суставная жидкость, плевральная жидкость, лимфа грудного протока, внутренние органы: сердце, мозг, паренхима печени, почек, селезенки, матка, мочевой пузырь, альвеолы легких. Стерильность в данном случае обеспечивается неспецифическими клеточными и гуморальными факторами иммунитета, препятствующими проникновению микробов в эти ткани и органы.

    На всех открытых поверхностях и во всех открытых полостях формируется относительно стойкая микрофлора, специфичная для данного органа, биотипа или его участка.

    Наибольшей обсемененностью характеризуются:

    1) 

    толстый кишечник

    . В составе нормальной микрофлоры преобладают анаэробные бактерии (96–99 %) (бактероиды, анаэробные молочнокислые бактерии, клостридии, анаэробные стрептококки, фузобактерии, эубактерии, вейлонеллы), аэробные и факультативно-анаэробные бактерии (1–4 %) (грамотрицательные колиформные бактерии – кишечная палочка, энтерококки, стафилококки, протеи, псевдомонады, лактобациллы, грибы рода Candida, отдельные виды спирохет, микобактерий, микоплазм, простейших и вирусов);

    2) 

    ротовая полость

    . Нормальная микрофлора разных отделов ротовой полости различна и определяется биологическими особенностями обитающих здесь видов. Представители микрофлоры ротовой полости делятся на три категории:

    а) стрептококки, нейссерии, вейлонеллы;

    б) стафилококки, лактобактерии, нитевидные бактерии;

    в) дрожжеподобные грибы;

    3) 

    мочевыделительная система

    . Нормальная микрофлора наружной части уретры у мужчин и женщин представлена коринебактериями, микобактериями, грамотрицательными бактериями фекального происхождения и неспорообразующими анаэробами (это пептококки, пептострептококки, бактероиды). На наружных половых органах у мужчин и женщин локализуются микобактерии смегмы, стафилококки, микоплазмы и сапрофитные трепонемы;

    4) 

    верхние дыхательные пути

    . Собственная микрофлора носа состоит из коринебактерий, нейссерий, коагулазо-отрицательных стафилококков и α-гемолитических стрептококков; в качестве транзиторных видов могут присутствовать S. aureus, E. coli, β-гемолитические стрептококки. Микрофлора зева более разнообразна из-за смешивания микрофлоры полости рта и воздухоносных путей и состоит из: нейссерий, дифтероидов, α– и β-гемолитических стрептококков, энтерококков, микоплазм, коагулазо-отрицательных стафилококков, моракселл, бактероидов, боррелий, трепонем и актиномицетов. В верхних дыхательных путях преобладают стрептококки и нейссерии, встречаются стафилококки, дифтероиды, гемофильные бактерии, пневмококки, микоплазмы, бактероиды;

    5) 

    кожа

    , особенно ее волосистая часть. В связи с постоянным контактом с внешней средой кожа является местом обитания транзиторных микроорганизмов, при этом имея постоянную микрофлору, состав которой различен в разных анатомических зонах и зависит от содержания кислорода в окружающей бактерии среде, а также от близости к слизистым оболочкам, особенностей секреции и других факторов. Состав резидентной микрофлоры кожи и слизистых оболочек характеризуется наличием Staphylococcus epidermidis, S. aureus, Micrococcus spp., Sarcinia spp., Propionibacterium spp., коринеформными бактериями. В состав транзиторной микрофлоры входят: Streptococcus spp., Peptococcus cpp., Bacillus subtilis, Escherichia coli, Enterobacter spp., Acinebacter spp., Moraxella spp., Pseudomonadaceae, Lactobacillus spp., Nocardiodes spp., aspergillus spp., Candida albaicans.

    Микроорганизмы, составляющие нормальную микрофлору, представляют собой четкую морфологическую структуру в виде биопленки – полисахаридного каркаса, состоящего из полисахаридов микробных клеток и муцина. В нем находятся микроколонии клеток нормальной микрофлоры. Толщина биопленки – 0,1–0,5 мм. В ней содержится от нескольких сотен до нескольких тысяч микроколоний, образующихся как из анаэробных, так и аэробных бактерий, соотношение которых в большинстве биоценозов составляет 10:1–100:1.

    Формирование биопленки создает для бактерий дополнительную защиту. Внутри биопленки бактерии более устойчивы к действию химических и физических факторов.

    Факторы, влияющие на состояние нормальной микрофлоры:

    1) эндогенные:

    а) секреторная функция организма;

    б) гормональный фон;

    в) кислотно-основное состояние;

    2) экзогенные: условия жизни (климатические, бытовые, экологические).

    Этапы формирования нормальной микрофлоры желудочно-кишечного тракта (ЖКТ):

    1) 

    случайное обсеменение слизистой

    . В ЖКТ попадают лактобациллы, клостридии, бифидобактерии, микрококки, стафилококки, энтерококки, кишечная палочка и др.;

    2) 

    формирование сети из ленточных бактерий на поверхности ворсинок

    . На ней фиксируются в основном палочковидные бактерии, постоянно идет процесс формирования биопленки.

    2. Основные функции нормальной микрофлоры

    Нормальная микрофлора рассматривается как самостоятельный экстракорпоральный орган с определенной анатомической структурой и следующими функциями.

    1. 

    Антагонистическая функция

    . Нормальная микрофлора обеспечивает колонизационную резистентность, т. е. устойчивость соответствующих участков тела (эпитопов) к заселению случайной, в том числе и патогенной, микрофлорой. Эта устойчивость обеспечивается как выделением веществ, оказывающих бактерицидное и бактериостатическое действие, так и конкуренцией бактерий за питательные субстраты и экологические ниши.

    2. 

    Иммуногенная функция

    . Бактерии, являющиеся представителями нормальной микрофлоры, постоянно поддерживают иммунную систему в должном состоянии своими антигенами.

    3. 

    Пищеварительная функция

    . Нормальная микрофлора принимает участие в полостном пищеварении за счет своих ферментов.

    4. 

    Метаболическая функция

    . Нормальная микрофлора участвует в обмене белков, липидов, уратов, оксалатов, стероидных гормонов, холестерина за счет своих ферментов.

    5. 

    Витаминообразующая функция

    . Как известно, в процессе метаболизма отдельные представители нормальной микрофлоры образуют витамины. Так, бактерии толстого кишечника синтезируют биотин, рибофлавин, пантотеновую кислоту, витамины К, Е, В2, фолиевую кислоту, не всасывающиеся в толстом кишечнике, поэтому следует рассчитывать только на те из них, которые в небольшом количестве образуются в подвздошной кишке.

    6. 

    Детоксикационная функция

    . Нормальная микрофлора способна обезвреживать образующиеся в организме токсические продукты обмена веществ или организмы, попавшие из внешней среды, путем биосорбции или трансформации в нетоксичные соединения.

    7. 

    Регуляторная функция

    . Нормальная микрофлора участвует в регуляции газового, водно-солевого обмена, поддержании рН среды.

    8. 

    Генетическая функция

    . Нормальная микрофлора в этом случае является неограниченным банком генетического материала, так как обмен генетического материала постоянно происходит как между самими представителями нормальной микрофлоры, так и патогенными видами, попадающими в ту или иную экологическую нишу.

    При этом нормальная микрофлора кишечника играет важную роль в конверсии желчных пигментов и желчных кислот, абсорбции питательных веществ и продуктов их расщепления. Ее представители продуцируют аммиак и другие продукты, которые могут адсорбироваться и участвовать в развитии печеночной комы.

    3. Дисбактериоз

    Дисбактериоз (дисбиоз) – это любые количественные или качественные изменения типичной для данного биотопа нормальной микрофлоры человека, возникающие в результате воздействия на макро– или микроорганизм различных неблагоприятных факторов.

    Микробиологическими показателями дисбиоза служат:

    1) снижение численности одного или нескольких постоянных видов;

    2) потеря бактериями тех или иных признаков или приобретение новых;

    3) повышение численности транзиторных видов;

    4) появление новых, не свойственных данному биотопу видов;

    5) ослабление антагонистической активности нормальной микрофлоры.

    Причинами развития дисбактериоза могут быть:

    1) антибиотико– и химиотерапия;

    2) тяжелые инфекции;

    3) тяжелые соматические заболевания;

    4) гормонотерапия;

    5) лучевые воздействия;

    6) токсические факторы;

    7) дефицит витаминов.

    Дисбактериоз различных биотопов имеет различные клинические проявления. Дисбактериоз кишечника может проявляться в виде диареи, неспецифического колита, дуоденита, гастроэнтерита, хронических запоров. Дисбактериоз органов дыхания протекает в форме бронхитов, бронхиолитов, хронических заболеваний легких. Основными проявлениями дисбиоза ротовой полости являются гингивиты, стоматит, кариес. Дисбактериоз половой системы у женщин протекает как вагиноз.

    В зависимости от выраженности этих проявлений различают несколько фаз дисбактериоза:

    1) компенсированную, когда дисбактериоз не сопровождается какими-либо клиническими проявлениями;

    2) субкомпенсированную, когда в результате дисбаланса нормальной микрофлоры возникают локальные воспалительные изменения;

    3) декомпенсированную, при которой происходит генерализация процесса с возникновением метастатических воспалительных очагов.

    Лабораторная диагностика дисбактериоза

    Основной метод – бактериологическое исследование. При этом в оценке его результатов превалируют количественные показатели. Проводится не видовая идентификация, а только до рода.

    Дополнительный метод – хроматография спектра жирных кислот в исследуемом материале. Каждому роду соответствует свой спектр жирных кислот.

    Коррекция дисбактериоза:

    1) устранение причины, вызвавшей дисбаланс нормальной микрофлоры;

    2) использование эубиотиков и пробиотиков.

    Эубиотики

    – это препараты, содержащие живые бактерициногенные штаммы нормальной микрофлоры (колибактерин, бифидумбактерин, бификол и др.).

    Пробиотики

    – это вещества немикробного происхождения и продукты питания, содержащие добавки, стимулирующие собственную нормальную микрофлору. Стимулирующие вещества – олигосахариды, гидролизат казеина, муцин, молочная сыворотка, лактоферин, пищевые волокна.

    Тема 7. Микрофлора растительного лекарственного сырья и микробиологический контроль лекарственных средств

    1. Микрофлора растительного сырья

    Обсеменение растительного лекарственного сырья микроорганизмами возможно несколькими путями:

    1) в процессе обсеменения инфицирование происходит через воду, нестерильную аптечную посуду, воздух производственных помещений и руки персонала;

    2) за счет нормальной микрофлоры растений и фитопатогенных микроорганизмов – возбудителей заболеваний растений, способных распространяться и заражать большое количество растений.

    Эпифиты – микроорганизмы, развивающиеся в норме на поверхности растений, они не наносят вреда, являются антагонистами некоторых фитопатогенных микроорганизмов, растут за счет обычных выделений растений и органических загрязнений поверхности растений. Эпифитная микрофлора препятствует проникновению фитопатогенных микроорганизмов в растительные ткани, усиливая иммунитет растений. Наибольшее количество эпифитной микрофлоры составляют грамотрицательные бактерии Erwinia herbicola, они образуют золотисто-желтые колонии. Эти бактерии являются антагонистами возбудителя мягкой гнили овощей. Обнаруживают в норме и другие бактерии – Pseudomonas fluorescens, реже – Bacillus mesentericus и небольшое количество грибов. Микроорганизмы находятся не только на листьях, стеблях, но и на семенах растений. Нарушение поверхности растений и их семян способствует накоплению на них большого количества пыли и микроорганизмов. Состав микрофлоры растений зависит от вида, возраста растений, типа почвы и температуры окружающей среды. При повышении влажности численность эпифитных микроорганизмов возрастает, при понижении влажности – уменьшается.

    Ризосфера – зона почвы около корней растений, где содержится значительное количество микроорганизмов. В ней часто присутствуют неспорообразующие бактерии (псевдомонады, микобактерии и др.), актиномицеты, спорообразующие бактерии и грибы. Они переводят различные субстраты в соединения, доступные для растений, синтезируют биологически активные соединения, вступают в симбиотические взаимоотношения с растениями, обладают антагонистическими свойствами против фитопатогенных бактерий.

    Ризоплана – поверхность корня растений. В ней в большей степени, чем в ризосфере, представлены псевдомонады.

    Микориза – симбиоз мицелия грибов с корнями высших растений. Она улучшает рост растений.

    Растения окультуренных почв в большей степени загрязнены микроорганизмами, чем растения лесов и лугов. В нижней прикорневой части растений содержится особенно много микроорганизмов. Это явление связано с попаданием микроорганизмов из почвы. В большом количестве обнаруживаются микроорганизмы на растениях, растущих на орошаемых полях, свалках, вблизи складирования навоза, в местах выпаса скота. При этом растения могут загрязняться патогенными микроорганизмами и при неправильной заготовке могут быть хорошей питательной средой для размножения микроорганизмов. Одним из способов, препятствующих их росту на растениях, является процесс высушивания растений.

    Фитопатогенными микроорганизмами являются следующие.

    1. 

    Бактерии

    . Болезни, вызываемые бактериями, называют бактериозами. Среди возбудителей бактериозов встречаются псевдомонады, микобактерии, коринебактерии, агробактерии и др. К бактериозам относятся различные виды гнилей, некрозы тканей.

    Бактериозы различают:

    1) общие: вызывают гибель всего растения или его отдельных частей и проявляются на корнях (корневые гнили) или в сосудистой системе растений;

    2) местные: ограничиваются поражением отдельных участков растений, проявляясь на паренхимных тканях.

    Передача возбудителей бактериозов происходит через зараженные семена, остатки больных растений, почву, воду, воздух, путем переноса насекомыми, моллюсками, нематодами. Бактерии проникают в растения через устьица, нектарники и другие части растений, а также даже через небольшие повреждения. При проникновении бактерий внутрь растений происходит повреждение растительных клеток, они мацерируются и отслаиваются друг от друга. Такой путь проникновения называется интрацеллюлярным и межклеточным, а заболевания – паренхиматозными. В случаях распространения и размножения бактерий в сосудистых пучках происходит как бы закупоривание их просвета бактериальной массой. В результате этого процесса и действия бактериальных токсинов растения увядают.

    2. 

    Вирусы

    , которые делят на возбудителей:

    1) мозаики, когда появляется пятнистая расцветка пораженных листьев и плодов, растения отстают в росте;

    2) желтухи, которая проявляется карликовостью растений, измененными многочисленными боковыми побегами, цветками и т. д.

    3. 

    Грибы

    , поражающие растения, могут в случае приготовления из пораженного зерна продуктов питания вызывать пищевые отравления – микотоксикозы. Гриб поражает в поле колоски злаковых: образуются склероции гриба, называемые рожками.

    Для борьбы с фитопатогенными микроорганизмами возделывают выносливые растения, очищают и обрабатывают семена, обеззараживают почву, удаляют пораженные растения, уничтожают переносчиков возбудителей болезней, обитающих на растениях.

    2. Микробиологический контроль лекарственных средств

    Обсеменение лекарственного сырья возможно на всех этапах его заготовки и при хранении. Увлажнение растений и растительного сырья способствует активному размножению микроорганизмов. Размножившись, микроорганизмы вызывают изменение фармакологических свойств препаратов, полученных из лекарственных растений. Микроорганизмы могут попадать из окружающей среды, от людей и обсеменять лекарственные препараты в процессе их изготовления из растительного сырья. Для соблюдения санитарного режима изготовления лекарственных препаратов проводят санитарно-микробиологический контроль объектов окружающей среды предприятия и каждой серии выпускаемой лекарственной формы. Лекарственные средства для парентерального введения в виде инъекций, глазные капли, мази, пленки и иное, в отношении которых имеются соответствующие указания в нормативно-технической документации, должны быть стерильными. Контроль стерильности лекарственных средств проводят путем посева на тиогликолевую среду для выявления различных бактерий, в том числе анаэробов; при посеве на среду Сабуро выявляют грибы, главным образом рода Candida. Стерильность лекарственных средств с антимикробным действием определяют путем мембранной фильтрации: фильтр после фильтрации исследуемого препарата делят на части и вносят для подращивания задержанных микроорганизмов в жидкие питательные среды. При отсутствии роста препарат считается стерильным.

    Лекарственные средства, не требующие стерилизации, обычно содержат микроорганизмы, поэтому их испытывают на микробиологическую чистоту. Для этого проводят количественное определение жизнеспособных бактерий и грибов в 1 г или 1 мл препарата, а также выявляют микроорганизмы, которые не должны присутствовать в нестерильных лекарственных средствах. В 1 г или 1 мл лекарственного сырья для приема внутрь должно быть не более 1000 бактерий и 100 дрожжевых и плесневых грибов. В случаях местного применения количество микроорганизмов не должно превышать 100 микробных клеток на 1 г или 1 мл препарата. В таблетированных препаратах не должно быть патогенной микрофлоры, а общая обсемененность не должна превышать 10 тыс. микробных клеток на таблетку.

    Тема 8. Основы медицинской биотехнологии

    1. Краткая история развития биотехнологии

    Как нам известно из древней истории, еще 6000–5000 лет до н. э. люди выпекали хлеб, варили пиво, готовили сыр, а из винограда делали вино. Они и не подозревали, что благодаря им уже в те далекие времена зародилась такая наука, как биотехнология. Не обоснованный научно, этот этап развития биотехнологии длился долгое время вплоть до XIX в., когда Л. Пастер открыл природу процесса брожения. Открытие этого процесса считается началом второго, научного этапа традиционной биотехнологии. С этого момента и по сегодняшний день получены и выделены ферменты, открыты и до сих пор открываются многие микроорганизмы. Кроме того, в результате изучения физиологии, биохимии и генетики микроорганизмов были разработаны способы их выращивания в массовых количествах; получены культуры животных и растительных клеток и разработаны способы их искусственного культивирования; получены многие продукты микробиологического синтеза, необходимые для медицины, сельского хозяйства и промышленности. Таким образом, вначале сформировалась техническая микробиология, а затем – биотехнология, при этом промышленное производство сводилось в основном к получению продуктов на основе природных штаммов.

    С течением времени на основе достижений молекулярной биологии и микробиологии, генетики и генетической инженерии, иммунологии и химической технологии на смену старой биотехнологии пришла новая, основанная на применении искусственно получаемых штаммов – суперпродуцентов, использовании иммобилизованных ферментов, применении культур животных и растительных клеток, широком использовании генетической инженерии для получения клеток-рекомбинантов, моноклональных антител и других биологически активных веществ.

    2. Понятие о биотехнологии, цели и задачи

    Биотехнология – научное понятие, объединяющее в себе такие науки, как микробиология, молекулярная биология, генная инженерия, химическая технология и ряд других наук. Необходимость биотехнологии обусловлена потребностями общества в новых, более дешевых продуктах для народного хозяйства, в том числе медицины и ветеринарии, а также в принципиально новых технологиях.

    Биотехнология – это получение продуктов из биологических объектов или с применением биологических объектов, в качестве которых могут быть использованы организмы животных и человека. Например, получение иммуноглобулинов из сывороток вакцинированных лошадей или людей; получение препаратов крови доноров; отдельные органы (получение гормона инсулина из поджелудочных желез крупного рогатого скота и свиней) или культуры тканей (получение лекарственных препаратов). Но чаще всего в качестве биологических объектов используются одноклеточные микроорганизмы, а также животные и растительные клетки. Это обусловлено следующими причинами:

    1) клетки являются своего рода биофабриками, которые в процессе жизнедеятельности вырабатывают разнообразные ценные продукты. Ими являются белки, жиры, углеводы, витамины, аминокислоты, антибиотики, гормоны, антитела, антигены, ферменты, спирты и иное, т. е. продукты, крайне необходимые в жизни человека, но недоступные для получения другими способами в связи со сложностью технологии процессов или экономической нецелесообразностью;

    2) клетки чрезвычайно быстро воспроизводятся. Это их свойство позволяет за относительно короткое время искусственно вырастить на сравнительно дешевых и недефицитных питательных средах в промышленных масштабах огромные количества биомассы микробных, животных или растительных клеток;

    3) биосинтез сложных веществ, таких как белки, антибиотики, антигены, антитела и иное, значительно экономичнее и технологически доступнее, чем химический синтез;

    4) возможность проведения биотехнологического процесса в промышленных масштабах при наличии соответствующего технологического оборудования и аппаратуры, доступность сырья, технологии переработки и др.

    Клетки животных и растений, микробные клетки в процессе ассимиляции и диссимиляции (или жизнедеятельности) образуют новые продукты и выделяют метаболиты, обладающие разнообразными физико-химическими свойствами и биологическим действием. При этом продукты ассимиляции и диссимиляции предложено делить на 4 категории:

    1) сами клетки как источник целевого продукта. К примеру, для получения живой или убитой корпускулярной вакцины используют выращенные бактерии или вирусы; а дрожжи используют как кормовой белок или основу для получения гидролизатов питательных сред и т. д.;

    2) макромолекулы, синтезирующиеся клетками в процессе выращивания. К ним относятся ферменты, токсины, антигены, антитела, пептидогликаны и др.;

    3) первичные метаболиты – низкомолекулярные вещества, необходимые для роста клеток. Ими являются аминокислоты, витамины, нуклеотиды, органические кислоты;

    4) вторичные метаболиты – низкомолекулярные соединения, не требующиеся для роста клеток. Ими являются антибиотики, алкалоиды, токсины и гормоны.

    Биотехнология использует эту продукцию клеток как сырье, которое в результате технологической обработки превращается в конечный продукт, который может использоваться в различных отраслях: в медицине для производства антибиотиков, витаминов, ферментов, аминокислот, гормонов, вакцин, антител, компонентов крови, диагностических препаратов, иммуномодуляторов, алкалоидов, пищевых белков, нуклеиновых кислот, нуклеозидов, нуклеотидов, липидов, антиметаболитов, антиоксидантов, противоглистных и противоопухолевых препаратов; в химической промышленности используют ацетон, этилен, бутанол; в пищевой промышленности используют аминокислоты, органические кислоты, пищевые белки, ферменты, липиды, сахара, спирты, дрожжи; в ветеринарии и сельском хозяйстве используют кормовой белок для производства кормовых антибиотиков, витаминов, гормонов, вакцин, а также биологических средств защиты растений и инсектицидов; в энергетике – биогаз и этанол.

    Достижения в биотехнологии позволяют применять ее для решения проблем, связанных с нарушением экологии (например, для очистки сточных вод, переработки отходов и побочных продуктов производства, а также их дегидратации (фенола, нефтепродуктов и других вредных веществ, пагубно влияющих на окружающую среду) с помощью микроорганизмов.

    В настоящее время в биотехнологии выделяют медико-фармацевтическое, продовольственное, сельскохозяйственное и экологическое направления, поэтому биотехнология подразделяется на медицинскую, сельскохозяйственную, промышленную и экологическую.

    Медицинская биотехнология подразделяется на фармацевтическую и иммунобиологическую, сельскохозяйственная – на ветеринарную и биотехнологию растений, промышленная – на соответствующие отраслевые направления (пищевая, легкая промышленность, энергетика и т. д.).

    Кроме того, биотехнология подразделяется на старую (традиционную) и новую, которую чаще связывают с генной инженерией.

    Таким образом, можно сказать, что биотехнология в некоторой степени является не только наукой, но и производством. Доказательством этого может служить тот факт, что промышленное производство в биотехнологии, основанное на принципах брожения (ферментация), биоконверсии (превращение одного вещества в другое), культивировании растительных и животных клеток, бактерий и вирусов, генетических манипуляциях, невозможно без промышленного оборудования и аппаратуры, отработки и оптимизации технологических процессов, разработки способов оценки и контроля продукции на всех ее стадиях. В связи с этим биотехнологическая промышленность в своем распоряжении имеет крупные заводы, опытно-конструкторские учреждения, научно-исследовательские институты. И хотя на предприятиях промышленной биотехнологии вырабатывается огромное количество (буквально тысячи тонн) продукции, тем не менее потребности быстрорастущего народного хозяйства биотехнология в полной мере удовлетворить не в состоянии. Поэтому развитию биотехнологии в настоящее время уделяется постоянное внимание, и эта отрасль быстро развивается.

    3. Микроорганизмы, клетки и процессы, применяемые в биотехнологии

    Как нам известно, в природе существует огромное число микроорганизмов, каждый из которых способен синтезировать продукты или осуществлять реакции, которые могут быть пригодны для использования в биотехнологии. На современном этапе развития биотехнологии практическое применение нашло около 100 видов микроорганизмов – бактерии, грибы, дрожжи, вирусы, водоросли, т. е. наиболее изученные.

    Дрожжи широко используют в хлебопечении, пивоварении, виноделии, выработки кормового белка, питательных сред для выращивания бактерий и культур животных клеток. Из 500 известных видов дрожжей используется лишь Saccharomyces cerevisiae, Saccharomyces carlsbergencis, Saccharomyces uwarum.

    Среди бактерий в биотехнологии применяют представителей таких родов, как:

    1) Acetobacter, превращающих этанол в уксусную кислоту, а уксусную кислоту – в углекислый газ и воду;

    2) Bacillus – для получения ферментов (В. subtilis), средств защиты растений (В. thuringiensis);

    3) Clostridium – для сбраживания сахаров в ацетон, этанол, бутанол;

    4) молочнокислые бактерии (Lactobacillus, Leuconostoc, Streptococcus);

    5) псевдомонады (например, P. denitrificans – для получения витамина В2, Corynebacterium glutamatum – для получения аминокислот и др.).

    Актиномицеты (род Streptomyces), грибы Penicillium chrysogenum, Cephalosporium acremonium и иные применяются в биотехнологии для получения разнообразных антибиотиков.

    Кроме того, бактерии, дрожжи и вирусы используют в качестве рецепиентов чужеродного генетического материала с целью получения рекомбинантных штаммов – продуцентов биотехнологической продукции. Например, получены рекомбинантные штаммы Е. coli, продуцирующие интерфероны, инсулин, гормон роста, антигены вируса СПИДа; штаммы В. subtilis, вырабатывающие интерферон; штаммы дрожжей, продуцирующих интерлейкин-2, антиген вируса гепатита В; рекомбинантные вирусы осповакцины, синтезирующие антигены гепатита В, вируса бешенства, клещевого энцефалита и др.

    Для получения вакцин и диагностических препаратов используют и патогенные микроорганизмы (брюшного тифа, коклюша, дифтерии, столбняка и др.).

    Культуры животных и растительных клеток, строение, физиология, процесс культивирования которых являются более сложными, чем бактериальных клеток, также нашли широкое применение в биотехнологии. Тем не менее из культур тканей растений получают разнообразные соединения, используемые в медицине, и прежде всего алкалоиды, противовоспалительные вещества, противолейкозные и противоопухолевые, противобактериальные, сердечные и почечные средства, ферменты, витамины, опиаты и иное, сельском хозяйстве, химической и других отраслях промышленности. Кроме того, животные клетки используют не только для получения продукции, синтезируемой клетками, но и для выращивания в клетках вирусов с целью получения из них вакцин и диагностических препаратов.

    Основными условиями успешного проведения технологического процесса получения продуктов микробного или клеточного синтеза являются:

    1) выбор или получение высокопродуктивного промышленного штамма-продуцента и поддержание его в активном состоянии. Это обусловлено тем, что различные штаммы могут иметь существенные различия по количеству и качеству продукции того или иного вещества, что в значительной мере сказывается на экономической эффективности и активности целевого продукта;

    2) подбор питательных сред, которые смогли бы обеспечить максимальное накопление биомассы или целевого продукта. При этом питательные среды должны состоять из дешевого, недефицитного и доступного сырья. С этой целью в крупномасштабном производстве для приготовления питательных сред служит обычно сравнительно дешевое сырье, которым являются меласса, парафины нефти, дрожжи, уксусная кислота, природный газ. При получении медицинских препаратов применяются казеин, препараты крови, среды из мясных гидролизатов.

    С целью получения продукции в максимальных количествах активный штамм-продуцент выращивают на оптимальной питательной среде в оптимальных условиях культивирования. Выращивание проводят в ферментаторах, или культиваторах, вместимость которых может варьировать от 2 л до 100–400 м3 в зависимости от потребности в продукте. Процесс культивирования ведется в асептических условиях, чтобы получить чистые культуры целевых микроорганизмов или культуры клеток.

    В ферментаторах применяют суспензионное (глубинное) культивирование, реже поверхностное – на плотных питательных средах (бактерии, грибы) или в жидком монослое (культуры животных клеток).

    Полученную биомассу микроорганизмов или культуры клеток подвергают переработке, вид которой определяется технологией получения целевого продукта.

    Наиболее типовые процессы:

    1) концентрирование биомассы сепарированием, центрифугированием и приготовление из нее жидкого или сухого продукта;

    2) высушивание, проводимое лиофильным способом из замороженного состояния или путем распыления в потоке теплого воздуха в специальных лиофильных аппаратах и распылительных сушилках;

    3) сбор центрифугата после отделения биомассы и выделения из нее целевого продукта. В некоторых случаях предварительно прибегают к разрушению клеток механическим, осмотическим или ультразвуковым способом с целью увеличения выхода целевого продукта.

    Если из биомассы или центрифугата необходимо выделить активную субстанцию (витамин, аминокислоту, антиген, фермент и др.), то применяют многоступенчатые физические (сепарирование, центрифугирование) или физико-химические (осаждение нейтральными солями, спиртом, ацетоном, ультрафильтрацию, хроматографию, электрофорез) методы очистки, выбор которых зависит от свойств выделяемого вещества, зависящих от природы, молекулярной массы, лабильности к внешним воздействиям и т. д. Чистота получаемого продукта определяется наличием в нем примесей и выражается коэффициентом очистки – отношением числа активных единиц продуктов к 1 мг белка или азота (так называемая удельная активность) в очищенном препарате к удельной активности исходного продукта.

    Как правило, в препаратах активная субстанция содержит примеси питательных сред, на которых выращивали микроорганизмы, а также продукты метаболизма и продукты распада микробной клетки. К примесям относятся белки, полисахариды и их комплексы, нуклеиновые кислоты, соли и другие низкомолекулярные вещества – бесполезные для препаратов, но нередко вызывающие нежелательные побочные реакции организма при применении препаратов в виде местных реакций, повышения температуры тела, аллергических проявлений. Этим объясняется стремление к получению препаратов, содержащих активную субстанцию в максимально очищенном состоянии.

    После получения активной субстанции из нее конструируют конечный препарат, который в зависимости от назначения и способа применения может быть в жидком или сухом состоянии или в виде мазей. Поскольку он может быть предназначен для наружного, парентерального или энтерального, аэрозольного применения, то может быть стерильным и нестерильным.

    Кроме того, конечный препарат, помимо примесей (от которых не удалось освободиться), содержит и необходимые добавки, которыми являются консерванты для поддержания стерильности препарата при хранении, стабилизаторы для повышения устойчивости лабильного активного начала при хранении, активаторы.

    В конечной композиции препарат фасуется, этикетируется и снабжается инструкцией по применению.

    Каждая серия препарата проходит стандартизацию в соответствии с технической документацией на производстве и в Государственном институте стандартизации и контроля медицинских биологических препаратов им. Л. А. Тарасевича или в Фармакологическом комитете в зависимости от назначения препарата.

    Тема 9. Генная инженерия и область ее применения в биотехнологии

    1. Понятие и сущность генной инженерии

    Основой биотехнологии является генная инженерия, которая по существу сводится к генетической рекомбинации (т. е. обмену генами между двумя хромосомами), приводящей к возникновению клеток или организмов с двумя и более наследственными детерминантами (генами), по которым родители различались между собой. Метод рекомбинации заключается в:

    1) выделении ДНК из разных видов организмов или клеток;

    2) получении гибридных молекул ДНК;

    3) введении рекомбинантных (гибридных) молекул в живые клетки;

    4) создании условий для экспрессии и секреции продуктов, кодируемых генами.

    Гены, кодирующие те или иные структуры, выделяются из хромосом или плазмид, прицельно выщепляются из этих генетических образований с помощью ферментов рестрикции или синтезируются химически. Набор ферментов, способных резать ДНК по определенным связям, является важным инструментом генетической инженерии. В последнее время обнаружены ферменты, расщепляющие по определенным связям РНК наподобие рестрикции ДНК, поэтому их называют рибозимами, но их роль пока до конца не изучена.

    С помощью химического синтеза могут быть получены сравнительно небольшие гены. Для этого вначале расшифровывают число и последовательность аминокислот в белковой молекуле вещества и по этим данным узнают очередность нуклеотидов в гене, так как каждой аминокислоте соответствуют три нуклеотида. С помощью синтезатора химическим путем создают ген, аналогичный природному гену.

    Полученный таким образом целевой ген сшивают с другим геном с помощью ферментов лигаз. В дальнейшем он используется в качестве вектора для встраивания гибридного гена в клетку. В качестве вектора могут служить плазмиды, бактериофаги, вирусы человека, животных и растений.

    Количество плазмид в бактериальной клетке может колебаться от одной до нескольких сотен и зависит от размера плазмиды: чем большие размеры она имеет, тем меньше ее копий в клетке. С помощью ампфликации генов (увеличения числа копий определенного гена в клетке) можно резко повысить производство кодируемого вещества клеткой.

    Бактериофаг как вектор используется аналогично. Целевой ген встраивается в геном фага, реплицируется вместе с генами вируса при размножении последнего в бактериальной клетке. Чаще всего используется фаг ламбда, содержащий ДНК из 50 000 пар нуклеотидов. Его преимущество перед плазмидами заключается в том, что фаговый вектор позволяет клонировать большие фрагменты чужеродной ДНК.

    В случае использования в качестве векторов вирусов человека, животных и растений чужеродный ген встраивают в ДНК вируса. Он реплицируется вместе с размножением последнего в клетке.

    Применяют в качестве вектора и космиды – гибрид плазмиды с фагом, использующийся для клонирования больших фрагментов ДНК эукариот.

    Для РНК-содержащих вирусов передача генетической информации возможна с помощью ревертазы, передающей информацию о структуре белка от РНК к ДНК, являющейся комплементарной РНК.

    Получение рекомбинантных молекул ДНК и рекомбинантных бактерий сводится к тому, что экспрессируемый ген в виде рекомбинантной ДНК встраивается в бактериальную или животную клетку, приобретающую новое свойство – способность продуцировать несвойственное этой клетке вещество, кодируемое экспрессируемым геном. Для лучшего проникновения вектора через стенку бактерий иногда прибегают к воздействию на стенку (например, хлоридом кальция), чтобы увеличить ее проницаемость.

    В качестве реципиентов экспрессируемого гена чаще всего используют Е. coli, В. subtilis, псевдомонады, дрожжи, вирусы с учетом возможности встройки чужеродного гена, а также уровня выраженности (экспрессии) синтеза вещества, кодируемого геном, возможности его секреции в окружающую среду, легкости и доступности массового культивирования, экологической безопасности. Некоторые штаммы рекомбинантных бактерий способны переключать на синтез чужеродного вещества, экспрессируемого геном, до 50 % своего синтетического потенциала, поэтому они нашли применение в биотехнологической промышленности и называются промышленными штаммами.

    Некоторые штаммы микроорганизмов хорошо экспрессируют чужеродные гены, но плохо секретируют продукт в окружающую среду. В таких случаях применяют дезинтеграцию, или разрушение, клетки с целью высвобождения из нее синтезированного продукта.

    В некоторых случаях, несмотря на наличие экспрессии и секреции, продукт не удается получить из-за разрушения в процессе синтеза или после него протеазами и другими ингибиторами.

    С целью повышения уровня секреции целевого белка к гену целевого белка присоединяют ген белка, хорошо секретируемого клеткой рецепиента. В результате образованный химерный белок, хорошо секретируемый клеткой, собирают и от него отщепляют целевой белок. Также возможно присоединение гениндикатора к гену целевого белка, в результате чего получают химерный индикаторный белок, а из него – целевой белок.

    2. Биологические препараты, полученные методом генной инженерии

    Несмотря на то что методом генной инженерии получена не одна сотня препаратов, в практику внедрена только часть: интерфероны, интерлейкины, фактор VIII, инсулин, гормон роста, тканевый активатор плазминогена, вакцина против гепатита В, моноклональные антитела для предупреждения отторжения при пересадках почки, диагностические препараты для выявления ВИЧ и др. Это обусловлено несколькими факторами.

    1. Невозможность управлять распространением экологически опасных рекомбинантных микроорганизмов, хотя в последнее время эти опасения отвергнуты;

    2. Использование рекомбинантных штаммов продуцентов предусматривает разработку сложных технологических процессов по получению и выделению целевых продуктов, на которую уходит значительное количество времени, а также средств.

    3. При получении препаратов методом геннной инженерии требуется проведение исследовательских работ, направленных на доказательство идентичности, а также иногда – решение дополнительных задач по приданию продукту природного характера.

    Медицинскими препаратами, разрабатываемыми методами современной биотехнологии, являются антикоагулянты и тромболитики – тканевые активаторы плазминогена, фиксаторы VIII и IX; колониестимулирующие факторы – соматомедин С, гранулоцитный и макрофагальный колониестимулирующие факторы; иммуноцитокины – интерфероны, интерлейкины, фактор некроза опухолей, пептиды вилочковой железы и иные; гормоны – гормоны роста, инсулин, эритропоэтин; вакцины против ВИЧ-инфекции, малярии, гепатита В и иные; ферменты – липаза, протеазы; рецепторы – Т-4 лимфоцитов и др.; моноклональные антитела для иммунотерапии опухолей, предупреждения реакций отторжения; диагностикумы для выявления ВИЧ-инфекции, сифилиса, гепатита В и др.

    Метод генной инженерии является одним из самых перспективных при получении многих белковых биологических веществ, представляющих ценность для медицины. В области создания биологически активных веществ медицинского назначения с помощью данного метода создаются препараты второго поколения, являющиеся аналогами природных веществ, обладающими большей эффективностью действия.

    При определении целесообразности и экономичности методов генной инженерии для получения медицинских или других препаратов учитываются:

    1) доступность;

    2) экономичность;

    3) качество получаемого препарата;

    4) новизна;

    5) безопасность проведения работ и др.

    Положительные стороны метода генной инженерии перед остальными заключаются в следующем.

    1. Природный микроорганизм или животные и растительные клетки не культивируются в промышленных условиях. С целью получения диагностических препаратов или вакцин прибегают к клонированию или синтезу генов протективных антигенов, их встраиванию в легко культивируемые бактерии. При выращивании этих рекомбинантных бактерий-рецепиентов получают нужные антигены, являющиеся основой для создания диагностического препарата или вакцины.

    2. Микроорганизм высоко патогенен и опасен при промышленном производстве. Так, для получения ВИЧ-диагностических препаратов и вакцин необходимые антигены получают методом генной инженерии.

    3. Исходное сырье для получения препарата традиционным способом является дефицитным или дорогостоящим.

    4. Метод активно используется для получения принципиально новых продуктов и препаратов, не существующих в природе. Например, только с помощью генной инженерии можно получить рекомбинантные поливалентные живые вакцины, несущие антигены нескольких микроорганизмов.

    5. Метод позволяет заменить многие методы, основанные на получении продуктов in vivo, на способы получения этих продуктов in vitro. Так, если ранее диагностические, лечебные и профилактические сыворотки получали из крови иммунизированных лошадей или вакцинированных людей-доноров, то в настоящее время предпочтение отдается гибридомной технике получения антител, основанной на получении клеток-гибридов путем слияния В-лимфоцитов, взятых от иммунизированных животных, и миеломных (раковых) клеток, способных быстро размножаться на искусственных питательных средах и продуцировать при этом антитела к антигену, использованному для иммунизации.

    6. Метод позволяет получать многие фармакологические вещества путем выращивания в промышленных условиях культур клеток лекарственных растений.

    Тема 10. Антибиотики и химиотерапия

    1. Химиотерапевтические препараты
    1   2   3   4   5


    написать администратору сайта