Подземная гидромеханика. Курсовая_подземка_16В. Теоретическая часть 1 Зависимость параметров флюидов и пористой среды от давления
Скачать 18.31 Kb.
|
ВВЕДЕНИЕОдной из основных научных дисциплин, объясняющих многие явления и факты природы, деятельности человека, техники и технологий, является гидромеханика – раздел механики, изучающий законы равновесия и движения жидкости. Гидромеханика находит свои приложения во многих областях: в авиации и кораблестроении, атомной энергетике и гидроэнергетике, гидрогеологии и водоснабжении, теплотехнике, метеорологии и химической технологии. Особое значение имеет применение гидромеханики в разнообразных технологических процессах нефтяной и газовой промышленности, включая фильтрацию жидкостей и газов в природных пластах, их движение в трубопроводах и аппаратах. Для этих применений она является базовой научной дисциплиной. Гидродинамическое описание процессов в различных областях техники и технологий определяется специфическим для каждой области классом гидромеханических задач. В связи с этим получили развитие такие дисциплины, как теоретическая гидромеханика, техническая гидромеханика, аэромеханика, гидравлика, подземная гидромеханика и др. Каждой из этих дисциплин соответствует не только свой круг гидромеханических задач, но и свои специфические методы математического описания моделей и решения конкретных задач. В то же время, все дисциплины объединяет единый подход, основанный на гипотезе сплошности и законах сохранения, которые составляют основу механики сплошных сред. Нефтегазовая подземная гидромеханика получает дальнейшее развитие под влиянием новых актуальных задач, выдвигаемых практикой разработки нефтяных, газовых и газоконденсатных месторождений. В связи с этим, наряду с изложением традиционных вопросов, гораздо большее внимание уделяется задачам взаимного вытеснения жидкостей и газов в пористых средах, задачам с подвижной границей и эффективным приближенным методам их решения. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ1.1 Зависимость параметров флюидов и пористой среды от давленияФильтрация в нефтяных и газовых пластах чаще всего происходит в неустановившихся (нестационарных) условиях. Это означает, что характеристики движения скорость фильтрации, давление, плотность изменяются с течением времени. Кроме того, они изменяются от точки к точке, поэтому говорят, что они образуют фильтрационное поле. Задачи неустановившегося движения жидкости и газа в пласте решаются методами математической физики. Для этого составляются и затем интегрируются дифференциальные уравнения. Чтобы вывести дифференциальные уравнения фильтрации в пористой среде, заключающей в себе движущийся флюид (жидкость, газ), выделяется бесконечно малый элемент пласта и рассматриваются изменения массы, импульса и энергии, происходящие в этом элементе за бесконечно малый промежуток времени. При этом используются законы сохранения массы, импульса и энергии, а также результаты лабораторного или промыслового экспериментального изучения свойств и поведения флюидов и свойств пористой среды с изменением термобарических условий. Число уравнений в системе (дифференциальных и конечных) должно равняться числу неизвестных функций, характеризующих рассматриваемый фильтрационный процесс, и подлежащих определению. Такая система является замкнутой. В этой главе ограничимся рассмотрением процессов, для которых температура флюида равна температуре среды и остается неизменной. Действительно, вследствие того, что фильтрация представляет собой очень медленный процесс, изменение температуры, возникающее в ходе движения вследствие наличия сопротивления стенок поровых каналов и трещин, а также из-за расширения флюида при уменьшении давления, успевает компенсироваться теплообменом с окружающими горными породами. Для таких изотермических процессов, как показано Б. Б. Лапуком, уравнения энергии рассматривать уже не нужно. Однако, в некоторых случаях при разработке нефтяных и газовых месторождений неизотермичность фильтрации проявляется локально в призабойной зоне скважин вследствие значительных перепадов давления. Изучение неизотермических процессов имеет особо важное значение в связи с повышением нефтеотдачи при закачке в пласт теплоносителей (горячей воды, пара), при применении внутрипластового горения, и в некоторых других случаях. В число дифференциальных уравнений фильтрации обязательно входит уравнение баланса массы в элементе пористой среды – уравнение неразрывности, а также дифференциальные уравнения движения. Для замыкания системы дополнительно вводятся уравнения состояния рассматриваемого флюида и пористой среды. Для получения решения системы уравнений надо еще задать условия на границах пласта и в начальный момент времени. В результате интегрирования, прежде всего, определяется распределение давления и скорости фильтрации по всему пласту в любой момент времени, т.е. 𝜇(р)=р(х, у, z, 𝜇), wx = wx(x, у, z, t), wy = w, (x, у, z, 0, wz = wz (x, y, z, t) Если рассматривается несжимаемая жидкость (р = const) в недеформируемой пористой среде (т = const, k = const), то число искомых функций ограничивается этими четырьмя функциями (j>wx, wy, wz); для фильтрации сжимаемого флюида в сжимаемой пористой среде кроме упомянутых функций нужно определить плотность 𝜌, вязкость 𝜇, пористость т, проницаемость к как функции координат и времени. В этом случае нужно иметь восемь уравнений - дифференциальных и конечных для определения восьми характеристик фильтрационного потока, жидкости и пористой среды. Аналитическое решение системы дифференциальных уравнений удается получить лишь в ограниченном числе простейших очень сильно идеализированных случаев, например, в задаче о притоке упругой жидкости к скважине в пласте бесконечной протяженности с постоянным дебитом. В более сложных случаях система уравнений решается численными методами с применением ЭВМ. Достаточно хорошо разработаны численные методы решения самых разнообразных и очень сложных задач подземной гидромеханики. При этом упомянутые аналитические решения играют очень важную роль: на них опробуются численные методы. Систему дифференциальных уравнений можно использовать также для качественного исследования процесса. Если полученные уравнения привести к безразмерному виду, то в качестве коэффициентов будут фигурировать безразмерные параметры подобия. Анализируя их строение и численные значения, можно судить о том, какие силы играют решающую роль в процессе, какие члены уравнения можно отбросить и т.д. Выведенные дифференциальные уравнения неразрывности и движения содержат, кроме скорости фильтрации и давления, плотность флюида 𝜌, коэффициент пористости m, коэффициент проницаемости к (для изотропной среды) и вязкость флюида 𝜇. Для дальнейших расчетов надо знать зависимости этих коэффициентов от давления и температуры. При изотермическом процессе зависимость плотности однородного флюида от давления представляет собой уравнение состояния. При установившейся фильтрации капельной жидкости можно считать ее плотность не зависящей от давления, т. е. рассматривать жидкость как несжимаемую, тогда р = const. В неустановившихся процессах часто большое количество нефти можно отобрать за счет расширения ее объема при снижении давления. В этих процессах необходим учет сжимаемости жидкости. Считая капельную жидкость упругой, можно записать закон ее сжимаемости в виде: для различных нефтей отечественных месторождений:
Для пластовых вод:
Перейдем от объемов к плотности и получим:
Откуда:
|