Осморегулирующая функция. Коррекция гиперосмии (рис. 68).
повышению секреции АДГ в супраоптических и паравентрикулярных ядрах гипоталамуса (при 295 мосм/кг в крови уже максимальная секреция); раздражению центра жажды в гипоталамусе (область III желудочка) и приему воды.
Влияние гиперосмии на клетки клубочковой зоны в надпочечниках приводит к понижению секреции альдостерона. Стимуляция клеток предсердия приводит к увеличению секреции натрийуретического пептида. В результате происходит повышение реабсорбции воды в почках, увеличение экскреции Na+ с мочой и прием жидкости, что способствует коррекции гиперосмии.
Снижение активности центральных и периферических осморецепторов приводит к:
уменьшению образования АДГ в ядрах гипоталамуса (при 280 мосм/кг в крови секреция АДГ прекращается); активации центра солевого аппетита в гипоталамусе; снижению секреции натрийуретического пептида в предсердиях; стимуляции образования альдостерона в надпочечниках.
В результате происходит увеличение реабсорбции и уменьшение экскреции Na+ в почках, повышение приема соли, увеличение выделения воды через почки, что способствует коррекции гипоосмии.
Волюмрегулирующая функция.
Коррекция гиповолемии (рис. 69).
Влияние с механорецепторов объема и давления (предсердий, правого желудочка, легочных артерий и вен, полой вены, каротидных и аортальных телец, афферентных артериол почки) приводит:
в гипоталамусе к повышению секреции АДГ, возбуждению центра жажды и солевого аппетита; в почках к гиперсекреции ренина и затем повышенному образованию ангиотензина II; в надпочечниках к гиперсекреции альдостерона; в предсердиях к снижению секреции натрийуретического пептида.
В результате происходит повышение реабсорбции воды и Na+, возможно снижение фильтрации в почках, увеличение приема жидкости, что способствует коррекции гиповолемии.
К оррекция гиперволемии.
Влияние с механорецепторов объема и давления приводит:
в гипоталамусе к снижению секреции АДГ; в почках к снижению секреции ренина и образования ангиотензина II; в надпочечниках к снижению секреции альдостерона; в предсердиях к увеличению секреции натрийуретического пептида и рефлекторному торможению секреции АДГ.
В результате увеличивается экскреция воды и Na+ в почках, что способствует коррекции гиперволемии.
Роль почек в регуляции ионного состава крови (почки регулируют не только общий показатель – осмотическое давление крови, но и концентрацию отдельных ионов, т.е. ионный состав крови).
Регуляция концентрации Na+ осуществляется с участием:
альдостерона, который повышает реабсорбцию Na+ из собирательных трубок в кровь; натрийуретического пептида предсердий, который увеличивает экскрецию Na+ с мочой; паратгормона и тирокальцитонина, которые повышают экскрецию Na+ с мочой.
Регуляция концентрации K+ осуществляется с участием:
Регуляция концентрации Ca2+ и фосфата (HPO42-) осуществляется с участием:
холекальциферола (витамина D3), который способствует реабсорбции Ca2+ и HPO42- в дистальных канальцах; паратгормона, который повышает реабсорбцию Ca2+ в дистальном отделе нефрона, а также ингибирует реабсорбцию Ca2+ и HPO42- в проксимальных канальцах; тирокальцитонина, который способствует экскреции с мочой Ca2+ и HPO42-.
Регуляция концентрации Mg2+ осуществляется с участием:
паратгормона, который способствует реабсорбции Mg2+ в толстом канальце восходящей части петли Генле; минералкортикоидов, больших доз тирокальцитонина, АДГ, которые способствуют экскреции Mg2+ с мочой.
Регуляция кислотно-основного состояния (см. тему 21; задание 1: 6.2).
Инкреторные функции почек.
Регуляция сосудистого тонуса.
Прессорная ренин-ангиотензиновая система.
Ренин (протеаза) секретируется миоэпителиоидными клетками афферентных артериол ЮГА и поступает в кровоток. Секрецию ренина стимулируют снижение почечного и системного АД, объема крови, концентрации Na+ мочи в области плотного пятна, увеличение симпатических влияний и действие адреналина на почки (через β1/ β2 –адренорецепторы). Ренин отщепляет от ангиотензиногена (α2-глобулина, образуемого печенью) неактивный декапептид – ангиотензин I, который под действием ангиотензинпревращающего фермента (АПФ) в легких и других органах переходит в активный октапептид – ангиотензин II. Эффекты ангиотензина II.
Сосуды: прямое сосудосуживающее действие, повышение АД. Почки: участвует в реализации клубочково-канальциевой обратной связи (см. выше 11.3); при снижении системного среднего АД ниже 90 мм рт. ст. вызывает сокращение выносящих артериол, препятствуя снижению клубочковой фильтрации; при увеличении системного АД, выходящего за верхний предел ауторегуляции кровотока в почках повышается фильтрация (прессорный диурез). ЦНС: стимулирует в продолговатом мозге прессорную зону сосудодвигательного центра, в гипоталамусе – центр жажды и солевой аппетит. Надпочечники: оказывает прямое стимулирующее действие на выработку альдостерона.
Калликреин-кининовая система (ренальный антигипертензивный механизм).
Почки (как и другие органы) образуют пептидазу калликреин, который отщепляет от пептида кининогена (образуемого клетками дистального канальца) активные кинины – нонапептид брадикинин и декапептид каллидин (физиологические антиподы ангиотензина II, разрушаются киназой). Выработку кининов стимулируют увеличение АД и объема крови, ангиотензин II, минералкортикоиды. Эффекты кининов: сильное сосудорасширяющее действие особенно на афферентные артериолы, натрийуретический и диуретический эффекты, усиление продукции простагландинов.
Почечные простагландины (в обычных условиях их действие минимально и резко увеличивается при уменьшении объема циркулирующей крови, кровотока почек, фильтрационного давления).
Синтез простагландинов (из арахидоновой кислоты) происходит преимущественно в интерстициальных клетках стромы мозгового вещества (стимулируют синтез ангиотензин II, кинины, катехоламины, АДГ). Образуются простагландины как сосудорасширяющие (ПрЕ2 и простациклин), так и сосудосуживающие (тромбоксан А2, ПрF2α). Основные эффекты простагландинов: увеличение почечного кровотока (расширение приносящей артериолы), экскреции Na+, продукции кининов; увеличение (ПрЕ2, простациклин) или снижение (ПрF2) выработки ренина.
Регуляция эритропоэза.
Эритропоэтин (гликопротеин) вырабатывается преимущественно клетками интерстиция мозгового вещества почек (85 – 90 % всего ЭП в здоровом организме), резервным органом образования является печень. Стимулируют продукцию ЭП: снижение напряжения О2 в ткани почек на венозном конце капилляра, усиление симпатических влияний. Почечный кислородный сенсор локализован в эндотелии капилляров проксимальных канальцев коркового и мозгового вещества. ЭП, синтезированный в почках, поступает в кровь и действует на клетки-мишени красного ростка миелоидной ткани, активируя их пролиферацию и синтез в них гемоглобина (подробнее см. 12, задание 1, 1.5).
Регуляция кальциевого обмена (через активацию витамина D3).
Поступающей с пищей и образующийся в коже под действием ультрафиолетовых лучей витамин D поступает в печень и превращается в 25-гидроокси-D3, который поступает в кровь, фильтруется в почках и реабсорбируется в проксимальных извитых канальцах. В проксимальных извитых канальцах (под действием 1-гидроксилазы) из 25-гидрокси-D3 образуется активная форма витамина D3 – 1,25-дигидроксихолекальциферол. Стимулируют его образование паратгормон (а следовательно, гипокальциемия и гипофосфатемия). Действие холекальциферола (через протеинкиназу С активирует белки Са2+–насоса и транспортеров Са2+ в клеточной мембране, через экспрессию генов увеличивает синтез этих белков).
В почках: способствует реабсорбции Ca2+ в дистальных канальцах и HPO42- в проксимальных канальцах. В тонком кишечнике: усиливает всасывание Ca2+ и HPO42-. В костях: мобилизует Ca2+ и HPO42- в результате пролиферации остеокластов и резорбции костной ткани. Суммарный эффект: способствует повышению концентрации Ca2+ и фосфатов в крови. Если при поражении почек резко снижается образование дигидрооксихолекальциферола, то нарушение обмена кальция в организме не может быть полностью компенсировано гиперсекрецией паратгормона: несмотря на ликвидацию гипокальциемии возникают нарушения функции сердца, костей и других органов.
Метаболическая функция почек.
Роль почек в обмене углеводов.
При гипергликемии глюкоза извлекается почечными клетками из крови, при гипогликемии – освобождается в кровоток. Глюконеогенез в почках более интенсивный, чем в печени; в условиях голодания почки синтезируют половину общего количества глюкозы, образующейся из аминокислот.
Роль почек в обмене белков.
Сохраняется фонд аминокислот в крови за счет гидролиза реабсорбировавшихся белков и пептидов. Разрушая профильтровавшиеся пептидные гормоны, почки участвуют в регуляции их уровня в крови.
Роль почек в обмене липидов.
Почки потребляют из крови свободные жирные кислоты и используют их для образования энергии, триглицеридов и фосфолипидов, которые используются не только в почках, но и в других органах. Почки поглощают из крови предшественник синтеза холестерина (мевалонат), регулируя уровень холестерина в крови.
Профильный материал для студентов лечебного факультета.
«Регресс» основных почечных функций при старении.
Снижение кровотока в почках (на 47 – 73 %). Снижение уровня клубочковой фильтрации (на 35 – 45 %). Уменьшение реабсорбции воды (на 30 %). Снижение способности к осмотической концентрации мочи. Особенности тока мочи, мочеиспускания и его регуляция у пожилых и старых людей.
Снижение эластических свойств, атрофия мышечных, разрастание соединительной ткани приводит к понижению эвакуаторной функции мочевыводящих путей. Уменьшение количества барорецепторов снижает эффективность нейрорефлекторных реакций: возникают дискинезии, антиперистальтические движения, рефлюксы. Снижение растяжимости стенки мочевого пузыря вызывает учащение позывов на мочеиспускание. Ослабление функций сфинктеров мочевого пузыря и мочеиспускательного канала приводит к недержанию мочи.
«Искусственная почка» и ее применение в клинике.
«Искусственная почка» является одним из методов очищения крови от веществ, накапливающихся при почечной недостаточности, основанным на диффузии веществ через полупроницаемую мембрану. Гидратцеллюлозная пленка, не пропускающая белки, разделяет текущую кровь и диализирующий раствор; кровь поступает из артерии и после прохождения через аппарат возвращается в вену. Диализирующий раствор подобен плазме по ионному составу и осмотической концентрации, но не содержит низкомолекулярные вещества и ионы, которые накапливаются в крови при почечной недостаточности (мочевину, креатинин, мочевую кислоту, соли К+, Mg2+, Ca2+). В результате из крови в солевой раствор происходит диффузия мочевины, креатинина, мочевой кислоты, Mg2+, K+, Са2+ и осуществляется коррекция азотистого и ионного состава внеклеточной жидкости и ацидоза.
Профильный материал для студентов педиатрического факультета.
Структурно-функциональные особенности почек плода.
Метанефрос (постоянная почка) появляется на 5-й неделе, нефроны незрелые (клубочки и фильтрующая поверхность малы, канальцы короткие, петля Генле не развита), образование нефронов продолжается весь внутриутробный период. Поступление безбелковой жидкости в чашечки лоханки регистрируется на 11 – 12-й неделе, моча гипотонична; количество ее мало: в 5 мес. – 2,2 мл/ч, к рождению – 26,7 мл/ч. Выделительная функция почки плода незначительна, эту роль выполняет плацента.
Структурно-функциональные особенности почек новорожденных.
Нефроны функционально незрелы (созревание – к 5 – 7-му году жизни). Величина почечного кровотока составляет 5% минутного объема крови (у взрослых – 25 %). Основная часть крови течет через мозговое вещество (у взрослых – через корковое). Функциональная незрелость фильтрационного аппарата: малая проницаемость и площадь фильтрующего барьера, низкий уровень кровотока (клиренс по инулину – 60 мл/мин на 1,73 м2). Незрелость аппарата реабсорбции (длина проксимальных канальцев в 10 раз меньше, чем у взрослых), поэтому менее интенсивно реабсорбируются аминокислоты, ионы и вода, однако белки и глюкоза реабсорбируются полностью. Низкий уровень секреции веществ из крови в просвет канальцев. Низкое концентрирование мочи; функция осмоконцентрации формируется в течение 1-го года жизни. Почки менее чувствительны к гормонам (например, к АДГ) и более подвержены нервным влияниям по сравнению с почками взрослых. В меньших пределах происходит компенсация сдвигов кислотно-основного равновесия. Функциональная незрелость почек новорожденных проявляется при нагрузках: введение воды может вызвать отек, избыток пищи – гиперазотемию.
Состав и количество мочи. Причины экстраренальной потери воды у новорожденного.
У новорожденных детей ночной диурез превышает дневной (у взрослых наоборот). Моча новорожденных гипотонична (450 мосм/кг) и приближается к уровню взрослых к концу 1-го года; осмоконцентрация мочи создается в основном солями, доля мочевины не превышает 15 %. Экстраренальная потеря воды у детей раннего возраста связана с относительно большим испарением воды через кожу, легкие, выведением через кишечник. У новорожденных и грудных детей не развито чувство жажды и имеется склонность к дегидратации.
Образование и выделение мочи у детей в другие возрастные периоды.
Особенности мочеобразования.
Скорость клубочковой фильтрации быстро нарастает в течение 1-го года жизни и медленно увеличивается в дальнейшем, достигая уровня взрослых в 4 года. Процессы канальцевой реабсорбции и секреции.
С возрастом происходит увеличение длины канальцев, их избирательной проницаемости и активности ферментов. Реабсорбция Na+ в раннем постнатальном периоде повышена примерно в 5 раз по сравнению с взрослым, в результате возможна задержка введенного Na+ и развитие отеков. Уровень реабсорбции и секреции достигает нормы взрослого к концу 1-го полугодия жизни.
Осмотическое концентрирование мочи.
Быстрое нарастание концентрационной способности и достижение уровня взрослых к концу 1-го года. Создание осмотической концентрации в основном за счет солей (доля мочевины менее 15 % в связи с положительным азотистым балансом). Чувствительность собирательных трубок к АДГ приближается к уровню взрослых к концу 1-го года. Суточный диурез (в мл) у детей старше 1 года можно рассчитать по формуле: 600 + 100 (В-1), где В – возраст в годах.
Мочеобразование и питьевой режим при искусственном вскармливании детей: более быстрое развитие концентрирующей способности почек и выделение гипертонической мочи, так как в коровьем молоке больше солей и белков, чем женском. Особенности мочеиспускательного рефлекса у грудных детей.
Большая частота мочеиспусканий у грудных детей (20 – 25 раз в сутки; уменьшается до уровня взрослых к 10 – 15 годам). Формирование условнорефлекторной регуляции мочеиспускания происходит к концу первого года жизни, закрепление условного рефлекса к – 2-м годам. Увеличение (у детей старше 1 года) порогового объема мочи в мочевом пузыре. Преобладание ночного диуреза над дневным диурезом.
Особенности почечной регуляции основных физико-химических констант крови у детей.
Роль почек в регуляции КОС (см. тему 21; задание 1: 10.2). Осмо- и волюмрегуляция.
Низкая способность концентрировать мочу обусловлена незрелостью структур, обеспечивающих эту функцию почки. Организм ребенка затрачивает примерно вдвое больше воды на выведение одного и того же количества осмотически активных веществ по сравнению с взрослым, что создает риск дегидратации. Дополнительную нагрузку на осморегуляцию дает вскармливание коровьим молоком, в результате чего возрастает потребность в воде для выведения осмотически активных веществ. В случае поступления избыточного количества жидкости в организм возникает опасность гидремии, так как у незрелой почки ограничены возможности выведения воды из-за малой клубочковой фильтрации. Имеется незрелость всех звеньев осмо- и волюмрегулирующих рефлексов, которые формируются до уровня взрослых к началу 2-го года жизни. Преобладание процессов ассимиляции над диссимиляцией разгружает экскреторную деятельность почек: характерен положительный баланс азота (меньше образуется и выделяется мочевины), Na+, K+, Ca2+, Cl-, фосфатов и др.
Участие внепочечных систем выделения в поддержании гомеостаза. Влияние потоотделения.
Значение потоотделения в выведении продуктов обмена увеличивается с возрастом, так как полного развития потовые железы достигают к 7 годам жизни ребенка. Общее количество потовых желез у новорожденного такое же, как у взрослого (2 – 3,5 млн), плотность в 10 раз выше. У детей функционируют не все потовые железы, так как часть их недоразвита и не все зрелые железы функционируют одновременно. В течение жизни увеличиваются размеры потовых желез и их секреторная активность.
|