Главная страница

Био́ника. Теоретическую бионику, которая строит математические модели этих процессов


Скачать 173.5 Kb.
НазваниеТеоретическую бионику, которая строит математические модели этих процессов
Дата05.04.2018
Размер173.5 Kb.
Формат файлаdoc
Имя файлаБио́ника.doc
ТипДокументы
#40444

Био́ника (от греч. βίον — элемент жизни, буквально — живущий) — прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, т.е. формы живого в природе и их промышленные аналоги.
Различают:

  • биологическую бионику, изучающую процессы, происходящие в биологических системах;

  • теоретическую бионику, которая строит математические модели этих процессов;

  • техническую бионику, применяющую модели теоретической бионики для решения инженерных задач.


Бионика тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками: электроникой, навигацией, связью, морским делом и другими.
Биомиметика
В англоязычной и переводной литературе чаще употребляется термин биомиметика (от лат. bios — жизнь, и mimesis — подражание) в значении — подход к созданию технологических устройств, при котором идея и основные элементы устройства заимствуются из живой природы. Одним из удачных примеров биомиметики является широко распространенная «липучка», прототипом которой стали плоды растения репейник, цеплявшиеся за шерсть собаки швейцарского инженера Жоржа де Местраля.
История развития

Идея применения знаний о живой природе для решения инженерных задач принадлежит Леонардо да Винчи, который пытался построить летательный аппарат с машущими крыльями, как у птиц: орнитоптер.
Появление кибернетики, рассматривающей общие принципы управления и связи в живых организмах и машинах, стало стимулом для более широкого изучения строения и функций живых систем с целью выяснения их общности с техническими системами, а также использования полученных сведений о живых организмах для создания новых приборов, механизмов, материалов и т. п.
Основные направления работ

Основные направления работ по бионике охватывают следующие проблемы:

изучение нервной системы человека и животных и моделирование нервных клеток (нейронов) и нейронных сетей для дальнейшего совершенствования вычислительной техники и разработки новых элементов и устройств автоматики и телемеханики (нейробионика);

исследование органов чувств и других воспринимающих систем живых организмов с целью разработки новых датчиков и систем обнаружения;

изучение принципов ориентации, локации и навигации у различных животных для использования этих принципов в технике;

исследование морфологических, физиологических, биохимических особенностей живых организмов для выдвижения новых технических и научных идей.
Моделирование живых организмов

Создание модели в бионике — это половина дела. Для решения конкретной практической задачи необходима не только проверка наличия интересующих практику свойств модели, но и разработка методов расчёта заранее заданных технических характеристик устройства, разработка методов синтеза, обеспечивающих достижения требуемых в задаче показателей.

И поэтому многие бионические модели, до того как получают техническое воплощение, начинают свою жизнь на компьютере. Строится математическое описание модели. По ней составляется компьютерная программа — бионическая модель. На такой компьютерной модели можно за короткое время обработать различные параметры и устранить конструктивные недостатки.

Именно так, на основе программного моделирования, как правило, проводят анализ динамики функционирования модели; что же касается специального технического построения модели, то такие работы являются, несомненно, важными, но их целевая нагрузка другая. Главное в них — изыскание лучшей экспериментальной технологической основы, на которой эффективнее и точнее всего можно воссоздать необходимые свойства модели. Накопленный в бионике практический опыт неформализованного"размытого" моделирования чрезвычайно сложных систем имеет общенаучное значение. Огромное число её эвристических методов, совершенно необходимых в работах такого рода, уже сейчас получило широкое распространение для решения важных задач оптимального управления, экспериментальной и технической физики, экономических задач, задач конструирования многоступенчатых разветвлённых систем связи и т. п.
Сегодня бионика имеет несколько направлений.
Архитектурно-строительная бионика

Архитектурно-строительная бионика изучает законы формирования и структурообразования живых шуб, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Нейробионика изучает работу мозга, исследует механизмы памяти. Интенсивно изучаются органы чувств животных, внутренние механизмы реакции на окружающую среду и у животных, и у растений.
Яркий пример шубной архитектурной бионики — полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. В чём же секрет? Оказывается, их строение сходно с конструкцией современных высотных фабричных труб — одним из последних достижений инженерной мысли. Обе конструкции внутри полые. Склеренхимные тяжи стебля растения играют роль продольной арматуры. Междоузлия (узлы) стеблей — кольца жесткости. Вдоль стенок стебля находятся овальные вертикальные пустоты. Стенки трубы имеют такое же конструктивное решение. Роль спиральной арматуры, размещенной у внешней стороны трубы в стебле злаковых растений, выполняет тонкая кожица. Однако к своему конструктивному решению инженеры пришли самостоятельно, не «заглядывая» в природу. Идентичность строения была выявлена позже. В последние годы бионика подтверждает, что большинство человеческих изобретений уже «запатентовано» природой. Такое изобретение XX века, как застежки «молния» и «липучки», было сделано на основе строения пера птицы. Бородки пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление.
Известные испанские архитекторы М. Р. Сервера и Х. Плоз, активные приверженцы бионики, с 1985 г. начали исследования «динамических структур», а в 1991 г. организовали «Общество поддержки инноваций в архитектуре». Группа под их руководством, в состав которой вошли архитекторы, инженеры, дизайнеры, биологи и психологи, разработала проект «Вертикальный бионический город-башня». Через 15 лет в Шанхае должен появиться город-башня (по прогнозам ученых, через 20 лет численность Шанхая может достигнуть 30 млн человек). Город-башня рассчитан на 100 тысяч человек, в основу проекта положен «принцип конструкции дерева».
Башня-город будет иметь форму кипариса высотой 1228 м с обхватом у основания 133 на 100 м, а в самой широкой точке 166 на 133 м. В башне будет 300 этажей, и расположены они будут в 12 вертикальных кварталах по 80 метров. Между кварталами — перекрытия-стяжки, которые играют роль несущей конструкции для каждого уровня-квартала. Внутри кварталов — разновысокие дома с вертикальными садами. Эта тщательно продуманная конструкция аналогична строению ветвей и всей кроны кипариса. Стоять башня будет на свайном фундаменте по принципу гармошки, который не заглубляется, а развивается во все стороны по мере набора высоты — аналогично тому, как развивается корневая система дерева. Ветровые колебания верхних этажей сведены к минимуму: воздух легко проходит сквозь конструкцию башни. Для облицовки башни будет использован специальный пластичный материал, имитирующий пористую поверхность кожи. Если строительство пройдет успешно, планируется построить ещё несколько таких зданий-городов.
В архитектурно-строительной бионике большое внимание уделяется новым строительным технологиям. Например, в области разработок эффективных и безотходных строительных технологий перспективным направлением является создание слоистых конструкций. Идея заимствована у глубоководных моллюсков. Их прочные ракушки, например у широко распространенного «морского уха», состоят из чередующихся жестких и мягких пластинок. Когда жесткая пластинка трескается, то деформация поглощается мягким слоем и трещина не идет дальше. Такая технология может быть использована и для покрытия автомобилей.
Нейробионика

Основными направлениями нейробионики являются изучение физиологии нервной системы человека и животных и моделирование нервных клеток-нейронов и нейронных сетей. Это даёт возможность совершенствовать и развивать архитектуру электронной и вычислительную техники. Существуют теории, утверждающие, что развитие нейробионики будет основанием создания искусственного интеллекта .
Какие же практические результаты дала бионика? Чем помогла технике? Специалистов этой области науки поражают, например, необыкновенные способности птиц к навигации. Всем известно, что почтовые голуби, где бы они ни были, обязательно вернутся в свой «родной дом». Доказано, что вроде бы ничем не примечательная птаха золотистая ржанка без посадки может пересечь Атлантический океан от Новой Шотландии до Южной Америки (около 4 тысяч километров). И из года в год летают стаи золотистых ржанок, летают по одним и тем же воздушным трассам.
Как ориентируются они в пространстве? Как находят свои невидимые дороги в небе? Что за «навигационные приборы», точные и высокочувствительные, «работают» внутри у этих рекордсменов навигации?
Мы вправе надеяться, что вопрос не останется без ответа. Залогом этой уверенности служат интересные эксперименты с птицами, которые ведут ученые. Например, уже установлено, что почтовые голуби обладают особенно острым зрением и способны выделять детали местности, при случае играющие роль ориентиров. Безупречная память воздушных почтальонов накапливает информацию, как компьютер.
А вот удивительная способность летучих мышей безошибочно ориентироваться в самых темных уголках пещер, проноситься сквозь кроны деревьев безлунной ночью уже не секрет для биоников. Они знают, что беспорядочное на первый взгляд ныряние, кручение и другие неожиданные выверты и трюки летучих мышей в погоне за добычей - не что иное, как чрезвычайно точный метод, названный эхолокацией. Это она помогает животным не приблизительно, а строго определенно узнавать расстояние до своей жертвы. Летучие мыши во время охоты необычайно болтливы: они «выстреливают» в насекомых заряды ультразвуков и тут же принимают их отраженными от насекомых.
Не удивляйтесь, что бионики в течение многих лет изучали, какую скорость развивают некоторые степные животные, птицы, насекомые, рыбы. Ведь известно: человек давно перекрыл скоростные рекорды и голубой акулы, делающей до 70 км/час, и самых быстроногих кузнечиков, которые могут скакать со скоростью в пределах от 10 до 60 км/час!
Японские инженеры и биологи установили в результате многочисленных экспериментов, что форма тела кита совершеннее формы современных судов. Было построено большое океанское китоподобное судно, и преимущества новой конструкции сказались тут же. При мощности двигателя, уменьшенной на четверть, скорость и грузоподъемность остались теми же.
Бионический принцип положен и в основу конструкции снегоходной машины «Пингвин». Она полностью оправдывает свое название. Как движутся по рыхлому снегу пингвины? На брюхе, отталкиваясь от снега ластами, как лыжными палками. Так же, лежа на снегу днищем, скользит по поверхности и «Пингвин» механический.
Пластика живых форм безупречна. При минимуме затрат в ней достигается максимальный эффект. Этот принцип, присущий живой природе, позволяет архитекторам создавать совершенно новые строения. Например, складчатые структуры по аналогии с листьями некоторых растений, многоэтажные здания, которым не страшны ни сильные ветры, ни грозные землетрясения, ибо их остовы подобны бамбуковым стеблям.
Давно известно, что химический состав растений может указать на присутствие полезных ископаемых. Пчелиный мед для геологов - своеобразный вид информации, «сладкая топографическая карта». Ведь по составу меда можно судить о залежах руд в районе сбора пчелами нектара. В морях и океанах животные, водоросли, бактерии, микробы накапливают в своих организмах химические элементы. Нельзя ли это «морское население» заставить добывать ценные вещества для человека?
У бионики есть символ: скрещенные скальпель, паяльник и знак интеграла. Этот союз биологии, техники и математики позволяет надеяться, что наука бионика проникнет туда, куда не проникал еще никто, и увидит то, чего не видел еще никто.
Возможно, развитие бионики уже в скором времени сделает многое непривычным в мире техники. И самые неожиданные сюрпризы ждут нас в разработке различных приборов обнаружения, методах добычи полезных ископаемых и производства веществ. А в технике - и этого ожидают - появятся такие системы управления, куда будут «встроены» новые биологические машины.



написать администратору сайта