Тепловые насосы. Тепловые насосы
Скачать 313.5 Kb.
|
ВодоёмБ лижайший водоём - идеальный источник тепла для теплового насоса. При использовании в качестве источника тепла воды озера или реки контур укладывается на дно. Этот вариант является идеальным с любой точки зрения – «высокая» температура окружающей среды (температура воды в водоеме зимой всегда положительная), короткий внешний контур, высокий коэффициент преобразования энергии тепловым насосом. На 1 метр трубопровода приходится ориентировочно 30 Вт тепловой мощности.Таким образом, для установки теплового насоса производительностью 10 кВт необходимо уложить в озеро контур длинной 300 метров. Для того, чтобы трубопровод не всплывал, необходимо установить около 5 кг груза на 1 погонный метр трубопровода. 2.3. Грунт Грунт применяют в качестве естественного источника тепла для зимнего отопления и летнего кондиционирования. Змеевики испарителя закладывают в грунт, причем выгодно используют его зонную аккумулирующую способность. По практическим данным, коэффициент m составляет от 2,2 до 3,2 в зависимости от внешних условий. Величины теплопередачи в грунте главным образом зависят от его влажности. Тепловые насосы, использующие грунт в качестве источника тепла, применяются для обслуживания жилых и торгово-административных сооружений. Грунт, как и подпочвенные воды, имеет одно преимущество - относительно стабильную в течение года температуру. Тепло отбирается по трубам, уложенным в землю горизонтально или вертикально (спиралеобразно). Могут использоваться: системы прямого расширения с охлаждающей жидкостью, испаряющейся по мере циркуляции в контуре трубопровода, заглубленного в грунт; системы с рассольной жидкостью, прокачиваемой по трубопроводу, заглубленному в грунт. В целом тепловые насосы рассольного типа имеют более низкую производительность по сравнению с агрегатами первого типа в силу происходящего в них "двойного" теплообмена (грунт - рассол, рассол - хладагент) и энергозатрат на обеспечения работы циркуляции рассола, хотя обслуживать такие системы существенно проще. Тепловая емкость грунта варьируется в зависимости от его влажности и общих климатических условий конкретной местности. В силу производимого отбора тепла во время отопительного сезона его температура понижается. В условиях холодного климата большая часть энергии извлекается в форме латентного тепла, когда грунт промерзает. В летний период под действием солнца температура грунта вновь поднимается, и появляется возможность вернуться к первоначальным условиям. Действующие по такому принципу тепловые насосы обычно называют геотермическими, что по сути своей неверно, поскольку здесь не задействовано радиогенное тепло земли, содержащееся в глубинных скальных породах. Геотермическими (скальными) источниками можно пользоваться в регионах, где подпочвенных вод мало или нет совсем. Тогда нужно пробурить колодцы глубиной от 100 до 200 м. В случае если требуется обеспечить высокую тепловую мощность, колодцы бурятся под определенным наклоном таким образом, чтобы добраться и упереться в большой скальный массив. Для таких тепловых насосов также применяется рассольная жидкость и пластмассовый сварной трубопровод, извлекающий тепло из скалы. В некоторых системах скальная порода используется для аккумулирования тепла или охлаждающей энергии. В силу высокой стоимости буровых работ скальные породы для обслуживания жилого сектора применяются довольно редко.СкважинаП ри использовании в качестве источника тепла скалистой породы трубопровод опускается в скважину. Можно пробурить несколько не глубоких скважин - это, возможно, обойдётся дешевле, чем одна глубокая. Главное - получить общую расчетную глубину. Для предварительных расчетов используется следующее соотношение – 50-60 Вт тепловой энергии на 1 метр скважины. То есть, для установки теплового насоса производительностью 10 кВт необходима скважина глубиной 170 метров. Земляной контур П ри укладке контура в землю желательно использовать участок с влажным грунтом, лучше всего с близкими грунтовыми водами. Использование сухого грунта тоже возможно, но это приводит к увеличению длины контура. Трубопровод должен быть зарыт на глубину примерно 1 м, расстояние между соседними трубопроводами - примерно 0.8-1.0 м. Удельная тепловая мощноть трубопровода, уложенного в землю трубопровода - 20-30 Вт/м. Т. е. для установки теплового насоса производительностью 10 кВт достаточно 350-450 м теплового контура, для чего хватит участка 20х20 кв.м. Специальной подготовки почвы не требуется, влияния на растения трубопровод при правильном расчёте не оказывает. 3. Цикл теплового насоса Рис. 1. Цикл теплового насоса в s - T-диаграмме. Теплообмен между рабочим телом и источником высокой температуры протекает при конечной разности температур необратимо. В результате такого теплообмена увеличивается энтропия: (Sd - Sc) - (S2 - S3) = delta S Площадь под процессом 4 - 1, характеризующая количество подведенного тепла к рабочему телу, равна площади е - 4' - 5 - к, следовательно, процесс 5 - 4' характеризует убывание энтропии окружающей среды: (S1 - S4) - (S5 - S4') = delta S1 > 0 Степень термодинамического совершенства этого цикла, как и в холодильном цикле, характеризуется коэффициентом обратимости. Для энергетической оценки цикла вводят коэффициент преобразования (трансформации) j = Q / L или j = E + 1 Если холодильная машина работает по теплофикационному циклу, то для энергетической оценки этот цикл рассматривают как два: цикл теплового насоса и цикл холодильный, границей между которыми является температура окружающей среды. 4. Примерная схема теплоснабжения с помощью теплового насоса Тепловые насосы могут применятся для отопления зданий при круглогодичном кондиционировании воздуха, горячего водоснабжения и технологических нужд различных предприятий. Однако использование тепловых насосов должно быть экономически обосновано. Рис.2. Схема теплоснабжения с помощью тепловых насосов. Схема теплоснабжения с помощью тепловых насосов показана на рисунке. Вода из отопительной установки направляется в сетевой насос СН и нагнетается им для подогрева в конденсаторы К1 и К2, работающие по двухступенчатой схеме и включенный последовательно по сетевой воде. В конденсаторе нижней ступени К1 вода нагревается от температуры t2 до некоторой промежуточной температуры tпр. После этого вода направляется в конденсатор второй ступени К2, где нагревается до температуры t1. Далее вода входит в отопительную систему, отдает тепло обогреваемым помещениям и при температуре t2 вновь поступает в теплонаносную установку. Тепло от источника низкой температуры (воды или воздуха) передается в испарителе к кипящему рабочему телу, пар которого при давлении Р0 направляется из испарителя И в компрессор нижней ступени КМ1, где сжимается до давления Рк1. После компрессора КМ1, рабочее тело распределяется двумя потоками. Один из них поступает в конденсатор К1. Другой поток поступает в компрессор КМ2 и сжимается до давления Рк2. Из компрессора КМ2 пар рабочего тела поступает в конденсатор К2, где нагревает теплоноситель от промежуточной температуры tпр до температуры t1. Из конденсатора К2 жидкое рабочее тело отводится в конденсатор К1 через дроссельный вентиль Д2. Весь поток конденсата поступает из конденсатора К1 через дроссельный вентиль Д1 в испаритель. Режим работы теплонаносной машины определяется режимом работы отопительной системы. При повышении наружных температур отопительного сезона работает только компрессор нижней ступени КМ1. При этом весь поток рабочего тела после компрессора КМ1 поступает в конденсатор К1, где нагревает теплоноситель до температуры t1. Теплонаносная машина регулируется с помощью регулятора температуры, воздействующего на дроссельный вентиль Д1. При более низких температурах наружного воздуха включается в работу компрессор КМ2 и конденсатор К2 второй ступени. Регулирование работы установки в диапазоне температур от tпр до температуры t1 осуществляется с помощью регулятора температуры, воздействующего на дроссельный вентиль Д2. Иногда верхняя ступень теплового насоса заменяется электрическим нагревателем, что снижает начальные затраты, но приводит к увеличению расхода электроэнергии. Для круглогодичного кондиционирования в южных районах (отопление зимой, кондиционирование воздуха летом) распространение получают мелкие теплонаносные автоматизированные агрегаты (кондиционеры с тепловым насосом) для обслуживания небольших одноквартирных домов и отдельных комнат. Эти установки очень компактны и используют наружный воздух в качестве источника низкой температуры. Реверсирование установки, то есть переход с холодильного режима на теплонаносный осуществляется изменением направления потока рабочего тела. В мелких установках, где в качестве дросселирующего органа служит капиллярная трубка, изменение потока жидкого рабочего тела не вносит каких-либо затруднений в эксплуатацию. 5. Пример использования теплонаносной системы для горячего водоснабжения жилого дома В Москве, в микрорайоне Никулино-2 фактически впервые была построена теплонаносная система горячего водоснабжения многоэтажного жилого дома. Этот проект был реализован в 1998-2002 годах Министерством обороны РФ совместно с Правительством Москвы, Минпромнауки России, Ассоциацией "НП АВОК" и ОАО "ИНСОЛАР-ИНВЕСТ" в рамках "Долгосрочной программы энергосбережения в г. Москве". Проект выполнен под научным руководством доктора технических наук, член-корреспондента РААСН Ю. А. Табунщикова. В качестве низкопотенциального источника тепловой энергии для испарителей тепловых насосов используется тепло грунта поверхностных слоев Земли, а также тепло удаляемого вентиляционного воздуха. Такая система также допускает использование в качестве низкопотенциального источника тепловой энергии тепло сточных вод. Установка для подготовки горячего водоснабжения расположена в подвале здания. Она включает в себя следующие основные элементы: - парокомпрессионные теплонаносные установки (ТНУ); - баки-аккумуляторы горячей воды; - системы сбора низкопотенциальной тепловой энергии грунта и низкопотенциального тепла удаляемого вентиляционного воздуха; - циркуляционные насосы, контрольно-измерительную аппаратуру. Основным теплообменным элементом системы сбора низкопотенциального тепла грунта являются вертикальные грунтовые теплообменники коаксиального типа, расположенные снаружи по периметру здания. Эти теплообменники представляют собой 8 скважин глубиной от 32 до 35 м каждая, устроенных вблизи дома. Система сбора низкопотенциального тепла удаляемого вентиляционного воздуха предусматривает устройство в вытяжных вентиляционных камерах теплообменников-утилизаторов, гидравлически связанных с испарителями теплонаносных установок. В этом случае обеспечивается более глубокое охлаждение вытяжного воздуха и использование его тепла в тепловых насосах для получения горячей воды. Система решена следующим образом. Из вентиляционных шахт удаляемый воздух собирается в коллектор и из него вытяжным вентилятором прогоняется через теплообменник-утилизатор, охлаждается и выбрасывается в атмосферу. Теплообменник-утилизатор связан с испарителем теплового насоса промежуточным контуром при помощи циркуляционного насоса. От конденсатора теплового насоса полезное тепло отводится в систему горячего водоснабжения. Поскольку режим работы тепловых насосов, использующих тепло земли и тепло удаляемого воздуха, постоянный, а потребление горячей воды переменное, система горячего водоснабжения оборудована баками-аккумуляторами. 6. Компрессор - элемент теплового насоса Компрессоры паровых холодильных машин входят в состав герметически закрытой системы и предназначены для отсасывания холодного агента из испарителя в целях поддержания в последнем давления Ро, сжатия пара и выталкивания его в конденсатор при давлении Рк, необходимом для сжатия. Производительность компрессора характеризуется холодопроизводительностью машины и зависит от конструкции, режима работы холодильной машины и холодильного агента, на котором она работает. 7. Классификация компрессоров Гидравлической машиной называют устройство, преобразующее механическую работу в энергию потока жидкости и наоборот. Турбиной или гидродвигателем называется гидравлическая машина, в которой в результате обмена энергией происходит преобразование механической энергии жидкости в механическую работу (вращение вала, возвратно-поступательное движение поршня и т.д.). Нагнетатель - гидравлическая машина, в которой происходит преобразование механической работы в механическую энергию жидкости. Основное назначение нагнетателя - повышение полного давления перемещаемой среды. Насос - устройство, служащее для напорного перемещения (всасывания, нагнетания) главным образом капельной жидкости в результате сообщения ей энергии. Насосы в основном классифицируют по принципу действия и конструкции. В этом смысле их подразделяют на объемные и динамические. Компрессором называют воздуходувную машину, предназначенную для сжатия и подачи воздуха или какого-либо газа под давлением не ниже 0,2 МПа. Объемные компрессоры работают по принципу вытеснения, когда давление перемещаемой среды повышается в результате сжатия. В таких компрессорах среда перемещается путем периодического изменения объема камеры, попеременно сообщающейся со входом и выходом компрессора. К ним относятся возвратно-поступательные (поршневые) и роторные (аксиально и радиально-поршневые, шиберные (пластинчатые), винтовые и т.п.) компрессоры. К преимуществам объемных компрессоров относятся: - возможность развивать напор независимо от подачи; - высокий КПД; - способность перекачивать жидкости различных вязкости и температуры; - возможность перекачивать жидкости, содержащие твердые взвеси; - хорошая всасывающая способность; - отсутствие пенообразования. К недостаткам объемных компрессоров относятся: - сложность конструкции; - сложная система регулирования подачи; - пульсирующая подача перекачиваемой жидкости. Динамические компрессоры работают по принципу силового действия на перемещаемую среду. В таких компрессорах среда под воздействием гидродинамических сил перемещается в камере (незамкнутом объеме), постоянно сообщающейся с входом и выходом компрессора. К ним относятся лопастные (радиальные, центробежные, осевые) нагнетатели и нагнетатели трения (вихревые, дисковые, струйные и т.п.). Лопастными называют компрессоры, в которых среда перемещается за счет энергии, передаваемой ей при обтекании лопастей рабочего колеса. Лопастные компрессоры объединяют две большие группы компрессоров: центробежные и осевые. В центробежных компрессорах среда перемещается через рабочее колесо от центра к периферии, а в осевых - через рабочее колесо в направлении его оси. В компрессорах трения и инерции среда перемещается под действием сил трения и сил инерции. В эту группу входят вихревые, лабиринтные, червячные и другие насосы. Среди них выделяют группу насосов-аппаратов, то есть насосов без движущихся частей (не считая клапанов). К этой группе относятся струйные насосы, эрлифты, вытеснители. Часто насосы поставляют в виде насосного агрегата, то есть насоса и двигателя соединенных между собой. Кроме того, существует понятие насосная установка, то есть насосный агрегат с комплектом оборудования, смонтированного по определенной схеме, обеспечивающей работу насоса в заданных условиях. 8. Требования к компрессорам При проектировании и изготовлении современных компрессоров предусматривают максимальную унификацию и стандартизацию конструкций, то есть создание одинаковых узлов и деталей для компрессоров с неодинаковой холодопроизводительностью и работающих на разных холодильных агентах. Унификация и стандартизация конструкций значительно облегчают организацию серийного производства, снижают себестоимость производства и ремонта. Компрессоры, используемые в системах теплогазоснабжения и вентиляции, должны удовлетворять следующим основным требованиям: - соответствие фактическим параметрам работы (давление, расход и мощность) заданным расчетным условиям; - возможность регулирования подачи и давления в определенных пределах; - устойчивость и надежность в работе; - простота монтажа; - бесшумность при работе. 9. Область применения различных насосов, нагнетателей и компрессоров Нагнетатели различных типов находят широкое применение в системах вентиляции и кондиционирования воздуха гражданских, общественных и промышленных зданий, в системах тепло-, газо и водоснабжения, в различных теплоэнергетических установках, в химической, добывающей, машиностроительной и других отраслях народного хозяйства. Наибольшее применение получили радиальные (центробежные) нагнетатели со спиральным кожухом общего и специального назначения. Используемые в качестве насосов, они создают напор 3500 м и более и имеют подачу 100 000 м3/ч в одном агрегате; при использовании в качестве вентиляторов их подача достигает 1 000 000 м3/ч в одном агрегате. Центробежные насосы в системах теплоснабжения применяют для подачи сетевой воды. В теплоэнергетических установках центробежные насосы применяют для питания котлоагрегатов, а также для подачи конденсата в системе регенеративного подогрева питательной воды и циркуляционной воды в конденсаторы турбин. Их используют также в системах гидрозолоудаления. Центробежные насосы применяют для подачи различных растворов и реагентов в технологических системах производств; в строительной и угольной промышленности - при гидромеханизации разработки грунтов и при гидравлическом способе добычи угля; в торфяной промышленности - для разработки залежей торфа и подачи смеси торфа с водой. Осевые нагнетатели широко применяются как в качестве вентиляторов, так и в качестве насосов. В последние годы в связи с увеличением мощностей паровых турбин циркуляционная вода в конденсаторы турбин подается быстроходными осевыми насосами. Вихревые насосы обычно применяют при необходимости создания большого напора или малой подачи. Поэтому их широко применяют в химической промышленности для подачи кислот, щелочей и других химически агрессивных реагентов, где при малых подачах (мала скорость протекания химических реакций) необходимы высокие напоры (велики гидравлические сопротивления реакторов и давления, при которых протекают реакции). Вихревые машины используют в качестве вакуум-насосов и компрессоров низкого давления. В последние годы они находят применение в системах перекачки сжиженного газа. Поршневые насосы применяют для питания паровых котлоагрегатов малой паропроизводительности и в качестве дозаторов реагентов для поддерживания требуемого качества питательной и котловой воды крупных котлоагрегатов. На тепловых электростанциях поршневые компрессоры служат для обдува поверхностей нагрева котельных агрегатов с целью их очистки от летучих золы и сажи, а также для снабжения воздухом пневматического инструмента и прессов. Роторные нагнетатели применяют на электростанциях в системах смазки и регулирования турбин (шестеренные насосы), часто используют в качестве компрессоров. Струйные нагнетатели получили широкое применение во многих отраслях народного хозяйства: в промышленной теплоэнергетике; в теплофикационных установках - в качестве элеваторов на вводах теплосети в здание; в системах вентиляции цехов химических предприятий, взрыво, пожароопасных помещений - в качестве эжекторов в вытяжных установках; в холодильных установках и для питания паровых котлов в передвижных паросиловых установках - в качестве инжекторов; в установках пневмо и гидротранспорта, водоснабжения и др. Струйные насосы используют для удаления воздуха из конденсаторов паровых турбин и в абонентских теплофикационных вводах в качестве смесителей прямой и обратной воды. Центробежные компрессоры являются основным видом компрессорных машин в химическом и металлургическом производствах. Эти машины получают распространение в системах магистрального газоснабжения. Компрессоры используются практически во всех отраслях народного хозяйства. Сжатый воздух как энергоноситель применяется в различных пневматических устройствах на машиностроительных и металлообрабатывающих заводах, в горно-добывающей и нефтяной промышленности, при производстве строительных и ремонтных работ. Компрессоры необходимы в газовой промышленности при добыче, транспортировке и использовании природных и искусственных газов. В химической промышленности газовые многоступенчатые компрессоры используются в циклах синтеза химических продуктов при высоком давлении. В последнее время сжатый воздух, получаемый от поршневых компрессоров, находит применение в текстильной промышленности как энергоноситель для проведения ткацкого процесса. В установках умеренного и глубокого холода, а также в газотурбинных установках компрессоры являются органической частью, в значительной степени, определяющей экономичность агрегатов. |