5_Лекция. Термические процессы. Термодиструктивные процессы
Скачать 478.44 Kb.
|
1 2 Технологическая схема Установка состоит из следующих секций: реакторное отделение, включающее печи крекинга тяжёлого П1 и лёгкого П2 сырья и выносную реакционную колонну К1; отделение разделения продуктов крекинга, которое включает испарители высокого давления К2 и низкого К4 давления для отделения крекинг - остатка, комбинированную ректификационную колонну высокого давления К3, вакуумную колонну К5 для отбора вакуумного термогазойля и тяжёлого крекинг - остатка и газосепараторов С1 и С2 для отделения газа от нестабильного бензина. Исходное сырьё после нагрева в теплообменниках поступает в нижнюю секцию колонны К3. Она разделена на 2 секции полу-глухой тарелкой, которая позволяет перейти в верхнюю секцию только парам. Продукты конденсации паров крекинга в верхней секции накапливаются в аккумуляторе (кармане) внутри колонны. Потоки тяжёлого и лёгкого сырья, отбираемые соответственно с низа и из аккумулятора К3, подаются в змеевики трубчатых печей П1 и П2, где нагреваются до температуры соответственно 500 и 550 0С и далее поступают для углубления крекинга в выносную реакционную камеру К1. Продукты крекинга затем направляются в испаритель высокого давления К2. Крекинг - остаток и термогазойль через редукционный клапан поступают в испаритель низкого давления К4, а газы и пары бензино - керосиновых фракций - в колонну К3. Уходящие с верха, К3 и К4 газы и пары бензиновой фракции охлаждаются в конденсаторе - холодильнике и поступают в газосепараторы С1 и С2. Затем газы направляются на разделение на ГФУ, а балансовое количество бензинов - на стабилизацию. Крекинг - остаток, выводимый с низа К4, подвергается вакуумной разгонке в колонне К5 на вакуумный термогазойль и вакуумный дистиллятный крекинг - остаток. I - сырье; II - бензин на стабилизацию; Ш - тяжелый бензин из К-4; IV-вакуумный отгон; V- термогазойль; VI - крекинг-остаток; VII -газы на ГФУ; VIII - газы и водяной пар к вакуум - системе; IX - водяной пар. Рисунок 7 - Принципиальная технологическая схема установки термического крекинга дистиллятного сырья 4 Висбрекинг тяжёлого сырья Наиболее распространённый приём углубления переработки нефти - это вакуумная перегонка мазута и раздельная переработка вакуумного газойля (каталитическим и гидрокрекингом) и гудрона. Получающийся гудрон, особенно в процессе глубоковакуумной перегонки, непосредственно не может быть использован как котельное топливо из-за высокой вязкости. Для получения товарного котельного топлива из таких гудронов без их переработки требуется большой расход дистиллятных разбавителей, что сводит практически на нет достигнутое вакуумной перегонкой углубление переработки нефти. Наиболее простой способ неглубокой переработки гудронов - это висбрекинг с целью снижения вязкости, что уменьшает расход разбавителя на 20 - 25 % масс., а также соответственно общее количество котельного топлива. Обычно сырьём для висбрекинга является гудрон, но возможна и переработка тяжёлых нефтей, мазутов, даже асфальтов процессов деасфальтизации. Висбрекинг проводят при менее жёстких условиях, чем термокрекинг, вследствие того, что, во - первых, перерабатывают более тяжёлое, следовательно, легче крекируемое сырьё; во - вторых, допускаемая глубина крекинга ограничивается началом коксообразования (температура 440 - 500 0С, давление 1,4 - 3,5 МПа). Исследованиями установлено, что по мере увеличения продолжительности (то есть углубления) крекинга вязкость крекинг - остатка вначале интенсивно снижается, достигает минимума и затем возрастает. Экстремальный характер изменения зависимости вязкости остатка от глубины крекинга можно объяснить следующим образом. В исходном сырье (гудроне) основным носителем вязкости являются натиевые асфальтены «рыхлой» структуры. При малых глубинах превращения снижение вязкости обусловливается образованием в результате термодеструктивного распада боковых алифатических структур молекул сырья более компактных подвижных вторичных асфальтенов меньшей молекулярной массы. Последующее возрастание вязкости крекинг - остатка объясняется образованием продуктов уплотнения - карбенов и карбоидов, также являющихся носителями вязкости. Считается, что более интенсивному снижению вязкости крекинг - остатка способствует повышение температуры при соответствующем сокращении продолжительности висбрекинга. Этот факт свидетельствует о том, что температура и продолжительность висбрекинга не полностью взаимозаменяемые между собой. Этот вывод вытекает также из данных о том, что энергия активации для реакции распада значительно выше, чем реакции уплотнения. Следовательно, не может быть полной аналогии в материальном балансе и особенно по составу продуктов между различными типами процессов висбрекинга. В последние годы в развитии висбрекинга в нашей стране и за рубежом определились два основных направления. Первое - это «печной» (или висбрекинг в печи с сокинг - секцией), в котором высокая температура (480 - 500 0С) сочетается с коротким временем пребывания (1,5 - 2 мин.). Второе направление - висбрекинг с выносной реакционной камерой, который, в свою очередь, может различаться по способу подачи сырья в реактор на висбрекинг с восходящим потоком и с нисходящим потоком. В висбрекинге второго типа требуемая степень конверсии достигается при более мягком температурном режиме (430 - 450 0С) и длительном времени пребывания (10 - 15 мин.). Низкотемпературный висбрекинг с реакционной камерой более экономичен, так как при одной и той же степени конверсии тепловая нагрузка на печь ниже. Однако при «печном» крекинге получается более стабильный крекинг - остаток с меньшим выходом газа и бензина, но зато с повышенным выходом газойлевых фракций. В последние годы наблюдается устойчивая тенденция утяжеления сырья висбрекинга в связи с повышением глубины отбора тяжёлых нефтей с высоким содержанием асфальто - смолистых веществ повышенной вязкости и коксуемости, что существенно осложняет их переработку. Эксплуатируемые отечественные установки висбрекинга несколько различаются между собой, поскольку были построены либо по типовому проекту, либо путём реконструкции установок AT или термического крекинга. Различаются они по числу и типу печей, колонн, наличием или отсутствием выносной реакционной камеры. Материальный баланс висбрекинг висбрекинг с вакуумной перегонкой Газ 3,7 3,0 Головка стабилизации 2,5 2,5 Бензин 12,0 8,5 Висбрекинг – остаток 81,3 – Лёгкий вакуумный газойль – 6,0 Тяжёлый вакуумный газойль – 20,0 Вакуумный висбрекинг – остаток – 59,5 Потери 0,5 0,5 Технологическая схема Остаточное сырьё (гудрон) прокачивается через теплообменники, где нагревается за счёт тепла отходящих продуктов до температуры 300 0С и поступает в нагревательно - реакционные змеевики параллельно работающих печей. Продукты висбрекинга выводятся из печей при температуре 500 0С и охлаждаются подачей квенчинга (висбрекинг остатка) до температуры 430 0С и направляются в нижнюю секцию ректификационной колонны К1. С верха этой колонны отводится парогазовая смесь, которая после охлаждения и конденсации в конденсаторах - холодильниках поступает в газосепаратор С1, где разделяется на газ, воду и бензиновую фракцию. Часть бензина используется для орошения верха К1, а балансовое количество направляется на стабилизацию. I - сырье; II - бензин на стабилизацию; III - керосино - газойлевая фракция (200 - 350 0С); IV - висбрекинг - остаток; V - газы ГФУ; VI - водяной пар. Рисунок 8 - Принципиальная технологическая схема установки висбрекинга гудрона Из аккумулятора К1 через отпарную колонну К2 выводится фракция лёгкого газойля (200 - 350 0С) и после охлаждения в холодильниках направляется на смешение с висбрекингом - остатком или выводится с установки. Часть лёгкого газойля используется для создания промежуточного циркуляционного орошения колонны К1. Кубовая жидкость из К1 поступает самотёком в колонну К3. За счёт снижения давления с 0,4 до 0,1 - 0,05 МПа и подачи водяного пара в переток из К1 в К3 происходит отпарка лёгких фракций. Парогазовая смесь, выводимая с верха К3, после охлаждения и конденсации поступает в газосепаратор С2. Газы из него направляются к форсункам печей, а лёгкая флегма возвращается в колонну К1. Из аккумулятора К3 выводится тяжёлая флегма, которая смешивается с исходным гудроном, направляемым в печи. Остаток висбрекинга с низа К3 после охлаждения в теплообменниках и холодильниках выводится с установки. Для предотвращения закоксовывания реакционных змеевиков печей (объёмно-настильного пламени) в них предусмотрена подача турбулизатора - водяного пара на участке, где температура потока достигает 430 - 450 0С. Висбрекинга с вакуумной перегонкой На ряде НПЗ (Омском и Ново-Уфимском) путём реконструкции установок термического крекинга разработана и освоена технология комбинированного процесса висбрекинга гудрона и вакуумной перегонки крекинг - остатка на лёгкий и тяжёлый вакуумные газойли и тяжёлый висбрекинг - остаток. Целевым продуктом процесса является тяжёлый вакуумный газойль, характеризующийся высокой плотностью (940 - 990 кг/м3), содержащий 20 - 40 % полициклических углеводородов, который может использоваться как сырьё для получения высокоиндексного термогазойля или электронного кокса, а также в качестве сырья процессов каталитического или гидрокрегинга и термокрекинга как без, так и с предварительной гидроочисткой. Лёгкий вакуумный газойль используется преимущественно как разбавитель тяжёлого гудрона. В тяжёлом висбрекинг - остатке концентрированные полициклические ароматические углеводороды, смолы и асфальтены. Поэтому этот продукт может найти применение как пек, связующий и вяжущий материал, компонент котельного и судового топлива и сырьё коксования. Для повышения степени ароматизации газойлевых фракций и сокращения выхода остатка процесс висбрекинга целесообразно проводить при максимально возможной высокой температуре и сокращённом времени пребывания. Комбинирование висбрекинга с вакуумной перегонкой позволяет повысить глубину переработки нефти без применения вторичных каталитических процессов, сократить выход остатка на 35 - 40 %. 1 2 |