Главная страница

А-Догель - Зоология беспозвоночных_2. Тип губки (spongia, или porifera)


Скачать 14.77 Mb.
НазваниеТип губки (spongia, или porifera)
АнкорА-Догель - Зоология беспозвоночных_2.doc
Дата19.05.2017
Размер14.77 Mb.
Формат файлаdoc
Имя файлаА-Догель - Зоология беспозвоночных_2.doc
ТипДокументы
#7915
страница4 из 60
1   2   3   4   5   6   7   8   9   ...   60


Происхождение сифонофор. При толковании строения сифонофор бы­ли высказаны две точки зрения. Одни ученые отстаивали их колониаль-ность, другие считали сифонофору единой особью, а все ее придатки лишь органами сложной особи.

Большинство современных зоологов считают сифонофор происшед­шими от колоний полипов, приспособившихся к плавающему образу жизни.

Кроме истории развития, в пользу такого толкования свидетельству­ет и то, что в настоящее время найдено несколько плавающих колони­альных полипов (в том числе один в Каспийском море — Moerisia) (рис. 104). На колониях таких гидроидов развиваются как полипоидные, так и медузоидные особи.

Можно представить себе, что сифонофоры произошли от подобных колониальных Hydroidea в результате возникновения полиморфизма особей и разделения функций между ними. При таком толковании строения сифонофоры воздушный пузырь, плавательные колокола и го-нофоры вполне легко и естественно подводятся под тип строения медуз, а кормящие полипы и пальпоны отвечают видоизмененным полипам.

КЛАСС II. СЦИФОИДНЫЕ МЕДУЗЫ (SCYPHOZOA)

К этому сравнительно небольшому классу (200 видов) относятся ме­дузы, обитающие только в морях. Они значительно крупнее гидро­медуз (рис. 105). Кроме того, они легко отличимы от последних по от­сутствию паруса. В остальном у сцифомедуз типично медузоидное строение.

Строение и физиология. Тело в виде круглого зонтика или, при вытя­гивании его по главной оси, высокого колокола (рис. 106). Посреди ниж­ней вогнутой стороны зонтика на конце ротового стебелька помещается четырехугольный рот. Углы рта вытягиваются в 4 желобовидных выро-


129


5—763







Рис. 105. Сцифоидные медузы. А — Cyanea capillata (рис. Кон­дакова); Б Aurelia aurita (no Кюкенталю) :

/ — ротовая лопасть, 2 — радиаль­ные каналы гастроваскулярной сис­темы; 3 — ропалии, 4—щупальца по краю зонтика, 5 — гонады







10




130

Рис. 106. Схема строения сцифоидной медузы (из Байера)] / — ротовые лопасти, 2—ротовое отверстие, 3 — щупальца, 4 — ро-палий, 5 — кольцевой канал, 6 — радиальный канал, 7 — гонада, 8 — гастральные нити, 9 — желудок, 10 — эксумбрелла, // — субумб-релла, 12 — мезоглея. Эктодерма показана штриховкой, энтодер­ма — черным

ста — ротовые лопасти, служащие для захвата пищи; у некоторых так называемых корнеротых сцифомедуз (отр. Rhizostomida) ротовые лопас-сти становятся складчатыми и срастаются, так что от ротового отверстия остаются лишь многочисленные мелкие поры, через которые проходит в кишечник пища — мелкие планктонные организмы (см. рис. 109).



J

Рот ведет в энтодермальный же­лудок, занимающий центр зонтика и образующий четыре неглубоких карманообразных выпячивания. В желудок вдаются с краев четыре валика с гастральными нитями, ко­торые служат для увеличения вса­сывающей поверхности энтодермы.

1

От желудка расходится к кра­ям тела система радиальных кана­лов. В простейшем случае их всего четыре, у других видов — восемь, у ряда сцифомедуз гастроваскуляр-ная система еще сложнее — со­стоит из 4 сильно ветвящихся ка­налов первого порядка, 4 ветвис­тых каналов второго порядка и 8 неразветвленных каналов третьего порядка. Каналы правильно чере­дуются в расположении, а своими наружными концами впадают в кольцевой канал, окаймляющий край зонтика.

Рис. 107. Продольный разрез чеоез ропалий медузы Carybdea. Налево разрез прошел через 2 главных глаза ропалия, пустое пространство внизу ропалия — статоцист (статолиты рас­творились при изготовлении препара­та) (по Шевякову):

/ — хрусталик. 2 — светочувствительный
слой ретинальных клеток, 3 — стекловид­
ное тело. 4 — энтодермальная выстилка
продолжающегося в ропалий радиального
канала (5), 6 — эктодерма ропалия

Край зонтика несет различное число щупалец. Некоторые из щупа­лец, расположенные у концов глав­ных каналов первого и второго по­рядков, видоизменяются и превра­щаются в краевые тельца, или ропа-лии (рис. 107). При этом щупальца укорачиваются и утолщаются, а вну­три них развиваются органы зрения « органы равновесия. Каждый ропа-лий чаще содержит один статоцист и несколько глазков разной степени

сложности строения; наряду с глазками, напоминающими таковые гид­роидных медуз, здесь имеются и более сложные глаза типа глазного пу­зыря. Такой глаз получается посредством погружения глазной ямки под эпителий и отшнуровывания ее от поверхности тела, причем ямка замы­кается под кожей в глазной пузырь. Кожный эпителий над пузырем остается тонким и прозрачным и называется роговицей. Дно и боковые стенки пузыря состоят, как и у гидромедуз, из пигментных и чувстви­тельных клеток. Часть стенки пузыря, лежащая непосредственно под ро­говицей, сильно утолщается и образует двояковыпуклый хрусталик. Внутренность пузыря заполнена бесструктурным стекловидным телом, которое выделяется стенками пузыря. Несмотря на сложность строения, глаза, по мнению большинства авторов, служат лишь для различения света и тьмы. В связи с сильным развитием органов чувств центральная нервная система сцифомедуз тоже испытывает усложнение. На протя­жении краевого нервного кольца (соответственно 8 ропалиям) возника-

5* 131

ют 8 скоплений нервных клеток, или ганглиев, — первый пример образо­вания значительных нервных узлов.

Размножение и развитие. Медузы раздельнополы. Половые железы образуются из энтодермы нижней поверхности карманов желудка. Со­зревшие половые клетки выводятся наружу через рот медузы.

После полного и равномерного дробления яйца образуется бластула, а затем типичная мерцательная планула. Она сначала плавает, позднее же прикрепляется передним полюсом к морскому дну. На прежнем зад­нем, а теперь верхнем полюсе прорывается рот, который ведет внутрь образующейся к этому времени гастральной полости. Вокруг рта разви­вается венчик щупалец, число которых кратно четырем. Энтодерма га­стральной полости дает 4 продольных желудочных валика. В результате этих изменений планула превращается в маленького одиночного поли­па— сцифистому (рис. 108), немного похожего на гидру, но устроенного сложнее. Этот полип может путем почкования давать начало другим сцифистомам.

Главный процесс, совершающийся со сцифистомой, — это стробиля-ция: полип делится путем ряда поперечных перетяжек, которые посте­пенно врезаются с краев в тело полипа, пока из последнего не получится подобие стопки наложенных друг на друга тарелок, соединенных цент­ральным стволом. На этой стадии развития полип называется стробилой.



Рис. 108. Развитие сцифомедузы Aurelia:

1 — яйцо, 2— планула, 3—сцифистома, 4 — почкующаяся сцифистома, 5 — стробиляция, 6 — эфира,

7—взрослая медуза (по Ъайеру)

132

Образовавшиеся в процессе стробиляции диски представляют собой мо­лодых медуз, расположенных вогнутыми сторонами их зонтиков кверху. Медузы постепенно, начиная с верхней, отрываются от сцифистомы, пе­реворачиваются выпуклой стороной кверху и переходят к плавающему образу жизни. Они еще во многом отличаются от взрослых медуз, а по­тому считаются особой личиночной стадией, или эфирой. Край зонтика эфиры глубоко вырезан в виде 8 лопастей. Превращение во взрослую медузу сопровождается усиленным ростом и состоит главным образом в том, что края зонтика выравниваются, формируется сложная канальная система, появляются краевые щупальца и зачатки гонад.

Таким образом, сцифомедузы обладают ясно выраженным метагене­зом, т. е. чередованием полового и бесполого поколений, причем в проти­воположность Leptolida из гидрозоев у них наиболее развито медузоид-ное поколение.

Экология. Сцифомедузы плавают при помощи сокращений зонтика, число которых может доходить до 100—140 в 1 мин. Некоторые медузы широко распространены; так, Aurelia aurita, обитающая почти во всех умеренных и тропических' морях, заходит и в арктические воды. Другие сцифоидные медузы распространены более ограниченно.

Тело большинства медуз прозрачно, что зависит от большого количе­ства содержащейся в тканях воды (особенно в мезоглее). У многих ме­дуз вода составляет 97,5% общей массы тела.

Размеры сцифомедуз могут быть очень велики: Aurelia aurita дости­гают обычно 40 см в поперечнике, тогда как Cyanea capillata иногда почти 2 м в диаметре при длине щупалец 10—15 м. Медузы — хищники. Они питаются различными планктонными беспозвоночными, а иногда и молодью рыб.

Расправленными щупальцами медузы облавливают большую пло­щадь воды. Так, Drymonema, достигая 25 см в поперечнике, облавлива­ет щупальцами круг в 150 м2.

Классификация. Сцифомедузы делятся на 5 отрядов.

Отряд 1. Stauromedusae состоит из небольшого числа своеобразных форм, ведущих прикрепленный образ жизни. У них имеется стебелек, которым медуза прикрепляется к субстрату. Край зонтика образует глубокие вырезки, между ними на особых рукооб-разных выростах сидят пучки головчатых щупалец. Жизненный цикл Stauromedusae проходит без чередования поколений. Из планулы непосредственно развивается молодая медузка. Наиболее типичными представителями отряда могут служить Haliclystus (рис. 109, .4) и Lucernaria.

Отряд 2; Cubomedusae тоже невелик. Его представители имеют обыкновенно четы­рехгранный высокий зонтик с четырьмя ропалиями (см. рис. 107) и четырьмя простыми (как у Carybdea) либо разветвленными щупальцами. Кубомедузы встречаются в мелко­водье теплых морей. Некоторые тропические виды, частые у берегов Австралии и Индо­незии (например, Chiropsalmus), могут вызывать у человека тяжелые, иногда смертель­ные «ожоги».

Отряд 3. Coronata. Зонтик делится кольцевой бороздкой на центральный диск и периферическую «корону». Ропалии и щупальца сидят на особых студенистых цоколях. Немногочисленные представители отряда (Atolla, Periphylla) встречаются преимущест­венно на больших глубинах.

Большинство сцифомедуз относится к двум последним отрядам.

Отряд 4. Semaeostomeae. Характерно наличие дисковидно сплющенного зонтика, несущего по краю многочисленные щупальца. Сюда принадлежат Aurelia aurita (см. рис. 105, Б) и обыкновенная медуза наших северных морей—Cyanea capillata (см. рис. 105, А). Некоторые медузы, особенно Pelagia, способны сильно светиться в тем­ноте.

Отряд 5. Rhizostomida (корнеротые медузы). Обычно это крупные медузы, наибо-ле,е многочисленные в тропических морях. В Черном море встречается представитель этого отряда Rhizostoma pulmo (рис. 109, Б).У корнеротых нет щупалец по краю зон­тика. Функция захвата добычи целиком осуществляется ротовыми лопастями. Некото­рые корнеротые медузы в странах Азии в соленом виде употребляются в пищу.

133



Рис. 109. Представители сцифомедуз. А — сидячая медуза Haliclystus (вид сбоку);

Б — корнеротая медуза Rhizostoma pulmo; В — схема продольного разреза корнеро-

той медузы (по Деляжу и Эреуару)

Мягкость тела и отсутствие скелета у медуз препятствуют хорошему сохранению их в ископаемом состоянии. Однако отдельные отпечатки попадаются, начиная с нижнего Кембрия. Наибольшее количество отпе­чатков медуз сохранилось в юрском сланце из Золеигофена.

КЛАСС III. КОРАЛЛОВЫЕ ПОЛИПЫ (ANTHOZOA)

Коралловые полипы бывают только полипоидной формы. Они совер­шенно не обнаруживают чередования поколений. Это морские животные, иногда одиночные, большей частью колониальные, причем колонии мо­гут достигать значительной величины. Это наиболее крупный класс ки-шечнополостных, охватывающий 6000 видов.

Строение и физиология. Коралловые полипы напоминают гидроид­ных, но устроены значительно сложнее. Тело отдельной особи имеет форму цилиндра (рис. ПО). Нижний конец одиночных полипов уплощен в подошву, служащую для прикрепления к субстрату, у колониальных форм он соединен со стволом или ветвью колонии. Ротовое отверстие помещается в центре противоположного конца тела. Вокруг рта распо­лагается венчик полых щупалец, число которых у одних полипов (подкл. Octocorallia) равно восьми, в других же (подкл. Hexacorallia) представ­ляет число, кратное шести.

Рот ведет сначала в длинную трубку — глотку, которая свешивается в гастральную полость. Глотка образуется впячиванием стенки ротового диска, вследствие чего выстлана внутри эктодермальным эпителием. Глоточная трубка сплющена в одном направлении, так что просвет глотки получает вид более или менее широкой щели. На одном или обо-

134



Рис. 110. Схема части колонии восьмилучевого корал­ла Alcyonium (по Л. и В. Шимкевич): ; — щупальца. 2 — ротовое отверстие. 3 — глотка, 4 — септа, 5 — мезентериальные нити, 6 — яйца

их концах этой щели рас­положены ротовые желоб­ки — сифоноглифы (рис. 111), которые несут клет­ки с очень длинными рес­ничками. Находясь в не­прерывном движении, рес­нички гонят воду внутрь гастральной полости по­липа, тогда как на осталь­ном участке глотки вода выводится из гастральной полости обратно наружу. Таким путем обеспечива­ется постоянная смена воды, имеющая важное значение для жизни поли­па. В кишечную полость поступает свежая, бога­тая кислородом вода, а у полипов, питающихся мелкими планктонными организмами, и пища. Во­да, отдавшая кислород тканям полипа и насы­щенная углекислотой, вы­носится наружу вместе с непереваренными пищевыми остатками.

Собственно гастральная полость выстлана энтодермой и поделена на участки (камеры) особыми радиальными перегородками или септами. Число камер соответствует числу щупалец. Септы состоят из мезоглеи, одетой энтодермой. В верхней части полипа перегородки прирастают





ю



Рис. 111. Поперечные разрезы через восьмилучевой (А) и шестилучевой (Б) корал­ловые полипы (Л — по Хиксон, Б — по Хайман):

1 — глотка, 2—полость глотки, 3 — сифоноглиф, 4 — вентральная направительная камера, 5 — септа, 6—мускульный валик септы, 7 — дорзальная направительная камера, 8 — внутренние камеры, расположенные между двумя септами первого порядка, 9

внутренние камеры, обра­зующиеся между вторично возникающими септами, 10—промежуточные камеры, 11 — эктодерма,

12 — энтодерма. Мезоглея зачернена

135





одним краем к стенке тела, другим к глотке. В нижней части полипа (ниже глотки) они прикрепляются лишь к стенке тела, вследствие чего центральная часть гастральной полости — желудок — остается неразде­ленной. Число септ соответствует числу щупалец. Свободные края септ утолщены, они называются мезентериальными нитями (см. рис. ПО). Последние играют важную роль в пищеварении, так как несут желези­стые энтодермальные клетки, выделяющие пищеварительные ферменты. Гистологическое строение коралловых полипов усложняется по срав­нению с гидроидными — вместо тонкой базальной мембраны у них тол­стый слой мезоглеи, кроме того, вместо эпителиально-мышечных клеток под эктодермой расположен слой обособившихся мускульных клеток (продольных и кольцевых). Произошла дифференциация мус­кульной ткани. Сильно развитые, энтодермального происхождения мускульные клетки имеются и в сеп­тах. Они образуют проходящие вдоль каждой септы (с одной из ее сторон) утолщения — мускульные валики (рис. 111). Подкожное нерв­ное сплетение у коралловых поли­пов выражено гораздо сильнее, чем у гидроидных.

Рис. 112. Известковые иглы (спикулы) восьмилучевых кораллов



Рис. 113. Схема строения шестилуче-
вого кораллового полипа: образова­
ние склеросепт (по Пфуртшеллеру):

/ — щупальца, 2 — ротовое отверстие. 3 — глотка, 4 — септы, 5—подошвенная плас­тинка, 6— чашечка, 7 — склеросепты, впя­чивающие мягкие ткани полипа (8)в гастральную полость

136


Только одиночные коралловые полипы, да и то не все, лишены ске­летных образований. Напротив, у колониальных кораллов есть скелет, чаще всего состоящий из углекис­лой извести, реже (у части восьми-лучевых кораллов Octocorallia) из рогоподобного вещества. У восьми-лучевых кораллов известковый ске­лет залегает внутри мезоглеи и в простейшем случае состоит из раз­бросанных микроскопических из­вестковых игл (рис. 112). Послед­ние, как и у губок, формируются внутри особых клеток — склероблас-тов. У благородного коралла извест­ковых игл (спикул) так много, что большинство их сливается в плот­ную массу, образуя твердый скелет. У шестилучевых кораллов (рис. 113) известковый скелет устроен иначе. У молодой особи сначала клетками эктодермы выделяется кнаружи подошвенная пластинка, а затем кругом тела полипа скелетная чашечка, или тека. Далее от теки внутрь тела врастают скелетные перегородки (склеросепты), впячи­вающие перед собой стенку полипа глубоко в его гастральную полость.

У колоний, состоящих из громадного числа особей, чашечки соседних полипов часто сливаются. Итак, у подкл. Octocorallia скелет внутренний (залегает внутри мезоглеи), у подкл. Hexacorallia по происхождению он внешний, так как лежит кнаружи от эктодермы, представляя продукт ее жизнедеятельности.

Склеросепты и настоящие мягкие перегородки имеют вполне опреде­ленное число и расположение, служащие важным систематическим при­знаком.

Восьмилучевые кораллы Octocorallia (см. рис. 111, Л) имеют 8 пере­городок, делящих гастральную полость на 8 периферических камер; две из этих камер, приходящиеся против узких краев глоточной трубки, на­зываются направительными. На септах в строго определенном порядке расположены мускульные валики. В результате в полость одной из на­правительных камер (условно называемую вентральной) обращены два мускульных валика. В другую направительную камеру (дорзальную) мускульные валики не вдаются.

У шестилучевых кораллов расположение септ сложнее (см. рис.'111, Б).Число расположенных попарно перегородок кратно шести, но по меньшей мере их 12. Перегородки возникают не все сразу. Снача­ла образуются шесть пар перегородок первого порядка, которыми гаст-ральная полость делится на 12 камер. Камеры, лежащие между двумя перегородками одной пары, называются внутренними, расположенные же между перегородками различных пар — промежуточными. Дальней­шие перегородки возникают парами, образуясь в пределах промежуточ­ных камер.

Склеросепты развиваются всегда во внутренних камерах и не пре­пятствуют закладке новых мягких септ, образующихся только в про­межуточных камерах.

Физиологические отправления исследованы преимущественно у акти­ний— одиночных крупных коралловых полипов, лишенных скелета. Ак­тинии в противоположность колониальным формам могут медленно пол­зать при помощи своей мускулистой подошвы. При раздражении акти­нии сильно сокращаются, втягивают щупальца и превращаются в небольшой твердый комок. Актинии очень чувствительны, особенно их щупальца.

Крупные актинии — большие хищницы, питаются раками, моллюсками и т. п. Добыча захватывается щупальцами, которые выпускают заряд стрекательных нитей, затем рот раскрывается, часть глотки выворачива­ется из него в виде широкого мешка и обхватывает пойманное животное.

Пищеварение актиний так же, как у гидр, представляет сочетание внутриклеточного с полостным. •

Размножение и развитие. Коралловые полипы размножаются беспо­лым и половым путем. Одиночные мягкие актинии иногда размножают­ся делением, у колониальных форм наблюдается почкование. Коралло­вые полипы, как правило, раздельнополы. Половые железы формируются в перегородках, между их энтодермой и мезоглеей. При половом раз­множении сперматозоиды прорывают эпителий септы мужских особей, выходят через рот наружу и через рот же проникают в женские особи, где и происходит оплодотворение яйца. Начальные стадии развития про­ходят в мезоглее септ. У многих актиний все развитие вплоть до обра­зования полипа происходит в гастральной полости материнского орга­низма. У некоторых Anthozoa оплодотворение наружное.

Развитие коралловых полипов идет сравнительно просто. Яйца испы­тывают полное равномерное дробление; сначала формируется бластула, потом мерцательная планула, которая плавает, а затем оседает перед-

137

ним концом на дно и, подобно плануле гидрозоев, превращается в моло­дого полипа.

Коралловые рифы и роль коралловых полипов в образовании земной коры. В тропических частях Атлантического, Индийского и Тихого океа­нов распространены рифообразующие (мадрепоровые) кораллы, отли­чающиеся иногда очень крупными' размерами (более 2 м в диаметре; ветви коралла Асгорога достигают высоты свыше 4 м). У них массивный известковый скелет, они образуют на мелководье густые поселения — коралловые рифы. Наиболее известны рифы побережья Австралии, Индонезии и островов Океании, многие из которых целиком слагаются из кораллового известняка. Дальше всего на север коралловые рифы заходят в Красном море. Самого «цветущего» состояния они достигают там, где зимняя температура воды не опускается ниже 20°С. Вместе с тем эти кораллы имеют ограниченное распределение по вертикали, опус­каясь лишь до глубины 50 м. Это связано с тем, что в тканях рифообра-зующих мадрепоровых кораллов живут симбиотические одноклеточные водоросли — зооксантеллы, которые нуждаются в солнечном свете. Роль зооксантелл в жизнедеятельности мадрепоровых кораллов до конца еще не выяснена. Предположение о том, что кораллы способны переваривать эти водоросли, в последнее время не подтвердилось. По-видимому, зоок­сантеллы необходимы для нормального образования скелета кораллов. Рост скелета резко замедляется в темноте или у кораллов, искусственно лишенных зооксантелл. Все рифообразующие кораллы нуждаются в морской воде с нормальной океанической соленостью, т. е. содержащей около 3,5% солей. В связи с этим они никогда не поселяются в устьях



Рис. 114. Участок кораллового рифа во время отлива (по Гентшелю)

рек и других опресненных уча­стках моря. Мадрепоровые кораллы нуждаются также в чистой прозрачной воде, доста­точно насыщенной кислородом. Коралловый риф служит местом обитания и развития многих морских организмов (pile. 114). Здесь в большом количестве поселяются водо­росли, моллюски, черви, рако­образные, иглокожие и пред­ставители других групп донных кишечнополостных. В зарослях коралловых рифов обитают многочисленные коралловые рыбки. Все эти животные и растения в совокупности обра­зуют своеобразное сообщество, или биоценоз, кораллового ри­фа. Часть членов этого сооб­щества обладает мощным из­вестковым скелетом и наряду с мадрепоровыми кораллами принимают участие в образова­нии рифа. Другие же находят здесь убежище и питаются за счет рифообразующих организ-мов- Животные кораллового биоценоза имеют причудливую


138



пеструю расцветку, которая помогает им укрываться на фоне ярко окра­шенных колоний мадрепоровых кораллов.

Рифы распадаются на три разновидности: береговые, барьерные и атоллы. Береговые окаймляют берег суши, барьерный риф расположен параллельно берегу, но на некотором от него расстоянии. Особенно зна­менит Большой Барьерный риф, тянущийся на протяжении 1400 км вдоль восточного берега Австралии.

Атолл — коралловое кольцо, выдающееся из моря на небольшую вы­соту, внутри кольца находится озеро морской воды, лагуна. На такой атолл приносятся водой или ветром семена разных растений (в том чис­ле кокосовые орехи) и он превращается в цветущий островок.

Происхождение береговых рифов не требует объяснений. Труднее объяснить возникновение атоллов, так как они со всех сторон окружены большими глубинами, не подходящими для поселения кораллов.

Ч. Дарвин, наблюдавший коралловые рифы и острова во время путе­шествия на «Бигле», предполагал, что все разновидности рифов возник­ли из береговых вследствие постепенного опускания дна океана. Если на месте острова, окруженного береговым рифом, морское дно начнет мед­ленно понижаться, то остров станет уходить под уровень воды и умень­шаться в размерах. Кораллы, его окружающие, по мере опускания рифа будут надстраивать его кверху, так как живут лишь на небольших глу­бинах, более же глубокие части рифа начнут отмирать. Таким образом, в то время как сам остров будет опускаться, риф, его окаймляющий, останется у поверхности воды, постепенно отделится от сократившегося в размерах острова и превратится в барьерный. При полном опускании острова на его месте остается мелководная лагуна, а риф превращает­ся в атолл.

Другими учеными (Агассиц и др.) возникновение барьерных и атол­ловых рифов объясняется иначе. Они считают, что кораллы покрывают самые вершины находящихся под водой горных кряжей и пиков. Эти горы сначала выдавались над водой, но потом были настолько разруше­ны атмосферными влияниями, что ушли под уровень моря, а на месте самых высоких точек их образовались мелководные участки моря, очень удобные для поселения кораллов. Бурение атоллов показало, однако, что на несколько сотен метров в глубину их основание состоит из отмер­шего кораллового полипняка. Это подкрепляет не взгляды Агассица, а теорию, высказанную Дарвином.

Некоторые авторы (Меррей) принимают, что атоллы и барьерные рифы возникают вследствие растворяющего известь действия морской воды. Наружные, обращенные к открытому океану части рифа омывают­ся водой, богатой солями извести, что способствует росту полипняков, внутренние же части рифа пользуются водой, которая обеднена изве­стью, но зато обогащена углекислотой — продуктом дыхания коралло­вых полипов, способствующей растворению извести. Вследствие этого отмирающие внутренние части рифа постепенно растворяются морской водой, тогда как периферические продолжают надстраиваться. Однако в результате последующих гидрохимических исследований моря теория Меррея не получила подтверждения. Оказалось, что углекислота, содер­жащаяся в воде лагуны, так же, как и по внешнему краю рифа, в усло­виях высокой температуры тропиков известь не растворяет. Таким обра­зом, ни одна из более новых теорий происхождения коралловых рифов и островов не опровергла основных положений Дарвина.

Что касается способа происхождения надводной части рифа, то все рифы сначала подводные, затем постепенно море обламывает краевые части рифа и обломки выкидывает на поверхность. Слой обломков рас-

139

тет, промежутки между крупными полипняками заполняются мелким обломочным материалом и, наконец, на месте бывшего подводного рифа получается слой слежавшейся известковой массы до 4 м и более высоты.

Мощная созидательная деятельность полипов объясняется отчасти их огромным количеством, отчасти легкостью процесса усвоения извести из морской воды в тропических водах.

Коралловые рифы существовали, начиная с древнейших геологиче­ских эпох, но состав животных-рифообразователей менялся. Рифы кай­нозоя и мезозоя были построены из кораллов, сходных с современными. В палеозое строителями рифов были вымершие коралловые полипы из подклассов Rugosa и Tabulata. Кроме того, большое участие в создании рифов принимали Strornatoporoidea — вымершие представители Hydro-zoa, близкие к современному подотр. Hydrocorallia.

Классификация. К классу Anthozoa относятся два современных и три целиком вымерших подкласса.

ПОДКЛАСС I. ВОСЬМИЛУЧЕВЫЕ КОРАЛЛЫ (OCTOCORALLIA)

Представители подкласса имеют 8 щупалец и 8 септ, скелет Octoco-rallia развивается в мезоглее (рис. 115). Объединяет отряды: альциона­рии (Alcyonaria), горгонарии, или роговые кораллы (Gorgonaria), и мор­ские перья (Pennatularia). К альционариям принадлежат наиболее про­сто устроенные коралловые полипы. Скелет их состоит из разбросанных в мезоглее спикул, никогда не сливающихся в осевой стержень. Колонии альционарии образуют густые заросли на небольших глубинах тропиче­ских морей, но встречаются также в умеренных и полярных водах. В се­верных и дальневосточных морях СССР наиболее обычна разветвленная



Рис. 115. Различные восьмилучевые кораллы. А — альционария Gersemia; Б — морс­кое перо Pennatula; В — колония рогового коралла Leptogorgia

140

Gersemia. У Gorgon aria кроме спикул по оси древовидной колонии за­легает роговой стержень, иногда частично или полностью обызвествлен-ный. Некоторые роговые кораллы замечательны тем, что их скелет со­держит значительное количество иода. Этим, вероятно, объясняется при­менение их в средние века в качестве лекарственного средства. Особое значение имеет благородный коралл (Corallium rubrum); встречается на глубине свыше 50 м в Средиземном море. Известковый скелет благород­ного коралла, окрашенный в розовый или кир.пично-красный цвет, слу­жит для изготовления украшений и мелких поделок. Изящные морские перья с правильным двухрядным расположением полипов на прямом стволе оранжевой, розовой или фиолетовой колонии относятся к отряду Pennatularia. Главный ствол такой колонии образован первичным поли­пом; в толще ствола нередко залегает роговой опорный стержень. Коло­нии морских перьев могут внедряться своим основанием в песчаный или илистый грунт. Некоторые из них обладают способностью к свечению.

ПОДКЛАСС II. ШЕСТИЛУЧЕВЫЕ КОРАЛЛЫ (HEXACORALLIA)



Шестилучевые кораллы делятся на пять отрядов, из которых наибо­лее обширны отряды актиний (Actiniaria) и мадрепоровых (Madrepora-ria). Актинии — одиночные полипы, способные медленно ползать при помощи подошвы. Это лишен­ные скелета крупные полипы (иногда свыше 60 см в диамет­ре), отличающиеся правильно­стью формы и красотой рас­цветки. Некоторые актинии (Sagarlia и др.) живут в сим­биозе с раками-отшельниками, на раковинах которых они по­селяются (рис. 116). При этом рак служит для актиний сред­ством передвижения, тогда как близкое соседство актиний, во­оруженных стрекательными капсулами, защищает рака от нападения хищников. Выра­стая и переселяясь в более крупную раковину, рак пере­саживает актиний клешнями с прежней раковины на новую. Мадрепоровые кораллы (Mad-reporaria) образуют колонии с массивным наружным извест- Рис' 116' Актиния на Раковине, занятой раком-

FJ .. отшельником (по Макарову)
ковым скелетом. Мадрепоро­
вые кораллы — основные обра-

зователи коралловых рифов; известны, начиная с триаса. Кроме того, имеются отряды одиночных (Ceriantharia) и колониальных (Zoantharia и Antipatharia) полипов.

ПОДКЛАСС III. ЧЕТЫРЕХЛУЧЕВЫЕ КОРАЛЛЫ (TETRACORALLIA, ИЛИ RUGOSA)

Это вымершие палеозойские, большей частью одиночные (рис. 117, А),реже ко­лониальные кораллы; чаще имеют вид расширенного к верхнему концу бокала или ро­га. В молодом возрасте Tetracorallia обнаруживают, судя по их скелетам, закладку

141













Рис. 117. Ископаемые кораллы. А—одиночный четырехлучевой коралл Omphiutna (из Деляжа); Б — колония кораллов Tabulata (из Друскина и Обручевой); В — колония

Heliolitidae (из Байера): / — общий вид, 2 — участок колонии

6 первичных перегородок, что говорит в пользу их родства с подкл. Hexacorallia. Следующие склеросепты закладываются не во всех шести, а только в четырех секто­рах. Отсюда и название этих кораллов — четырехлучевые. Второе наименование — Rugosa — связано с характерными кольцевыми морщинами на наружной поверхности скелета. Четырехлучевые кораллы распространены с ордовика до пермской эпохи, но главного развития достигают в каменноугольную эпоху, когда за их счет образовыва­лись значительные коралловые рифы,

ПОДКЛАСС IV. ТАБУЛЯТЫ (TABULATA)

Вымершие колониальные (рис. 117, Б),реже одиночные кораллы с полипами не­значительных размеров. Число склеросепт обычно кратно 6, но, как правило, они недо­развиты или имеют вид расположенных рядами шипиков. Древнейшие табуляты из­вестны с кембрия, но наиболее широкое распространение получили в ордовике, силу­ре и девоне, участвуя в образовании коралловых рифов. К началу мезозоя табуляты полностью вымерли.

ПОДКЛАСС V. ГЕЛИОЛИТИДЫ (HELIOLITIDAE)

Большая группа вымерших палеозойских кораллов, исключительно колониальных. Они характеризуются наличием 12 склеросепт. Гелиолитиды были широко распростра­нены и поэтому имеют большое значение как руководящие формы при определении возраста палеозойских отложений.

Филогения типа Coelenterata

Низшими из кишечнополостных являются, без сомнения, гидрозои (Hydrozoa). Это доказывается тем, что у них тело представляет собой двухслойный мешок, оба слоя которого соприкасаются по краям рта. Исходной формой гидрозоев следует, по-видимому, считать морских гидроидных полипов, которые уже вторично дали начало медузам, отли­чающимся гораздо более сложной организацией. Появление медуз име­ло прогрессивное значение, так как они играли большую роль в расселе­нии вида. Однако у современных Hydrozoa в ряде случаев произошла вторичная утрата медузоидного поколения.

Пресноводные Hydrida не могут рассматриваться как примитивные в филогенетическом смысле формы, так как особенности их строения и

142

жизненного цикла, по-видимому, вторично изменены в связи с перехо­дом к пресноводному образу жизни.

Среди гидрозоев сифонофоры представляют, вероятно, группу более позднего происхождения, у -которой произошла значительная и разно-направленная специализация отдельных особей колоний, в результате чего получились полиморфные колонии.

В процессе эволюции Scyphozoa полипоидная стадия (сцифистома) усложнилась незначительно, тогда как сцифомедузы достигли гораздо более высокой степени сложности, что связано с их свободноплаваюшим образом жизни. Эволюция Anthozoa, жизненный цикл которых проходил без метагенеза, шла в направлении приспособления к сидячему образу жизни, для которого очень характерно размножение почкованием и об­разование колоний. Этот класс кишечнополостных проделал значитель­ную прогрессивную эволюцию в направлении усложнения строения, так как пищеварительный аппарат Anthozoa дифференцируется уже на две части: эктодермальную глотку и энтодермальную среднюю кишку. Кро­ме того, у Anthozoa и Scyphozoa пищеварительная система испытывает усложнение и в смысле образования стенками желудка перегородок, увеличивающих поверхность всасывания пиши. Ввиду сходства плана строения этих классов с таковым гидрозоев можно считать их генетиче­ски связанными с этим низшим классом.

ТИП ГРЕБНЕВИКИ (CTENOPHORA)

Гребневики — морские свободноплавающие, реже ползающие или сидячие радиально-симметричные (двухлучевые) животные. Тело, как и у кишечнополостных, состоит из двух слоев клеток — эктодермы и энтодермы, между которыми имеется толстый слой мезоглеи. Характер­ная черта типа — наличие клейких клеток. Движение осуществляется работой видоизмененных ресничек.

Тип Ctenophora, объединяющий около 90 видов, имеет единственный класс, носящий то же название.

КЛАСС ГРЕБНЕВИКИ (CTENOPHORA)

Строение и физиология. Тело чаще всего мешковидно, причем на одном конце мешка помещается рот; этот полюс тела называется рото­вым, оральным, противоположный же — аборальным (рис. 118). Глав­ная ось тела проходит через оба полюса; через главную ось можно про­вести две различные плоскости симметрии, т. е. тело гребневиков постро­ено по радиальному, а именно по двухлучевому типу. Однако следует заметить, что многие органы (ряды гребных пластинок, радиальные каналы, половые железы) расположены вокруг главной оси в числе 8. Таким образом, общее строение тела гребневиков обнаруживает соче­тание двух типов симметрии: двухлучевого и восьмилучевого.

Рот ведет в эктодермальную глотку, имеющую вид сильно сплющен­ной в одном направлении трубки; кверху глотка переходите энтодермаль-ный желудок — мешок, сплющенный в направлении, перпендикулярном к плоскости сплющивания глотки. Плоскость, по которой сплющена глотка, называется глоточной, а та, в которой происходит сплющивание желудка, — щупальцевой, так как в ней же лежит пара щупалец (см. ниже); эти плоскости и являются плоскостями симметрии (рис. 118). От желудка отходят каналы гастроваскулярной системы. Один канал направлен к полюсу, противоположному рту, и непосредственно под або­ральным полюсом распадается на 4 короткие ветви: две слепые и две,

143

заканчивающиеся узкими отверстиями. Другие два канала отходят от желудка в щупальцевой плоскости и в направлении, перпендикулярном



8

главной оси тела, — это каналы первого порядка; каждый из них на пути к краю тела дважды дихо­томически ветвится, давая 2 канала второго и потом 4 канала третьего поряд­ка. Получившиеся таким образом 8 каналов треть­его порядка впадают в соответственное число ме­ридиональных каналов, идущих параллельно по­верхности тела от або-рального полюса к ораль­ному; оба конца меридио­нальных каналов замкну­ты слепо. От желудка от­ходят еще два канала, идущие к оральному по­люсу по сторонам глотки. Соответственно мери­диональным каналам на

Рис. 118. Схема строения гребневика, перерезанного поверхности тела прохо-
поперек (по Гертвигу): дят 8 ребер, или валиков,

/ — ротовое отверстие, 2 — глотка, 3 — желудок, 4 — мери- ня КОТОПЫХ СИЯЯТ Г ЛЯ RHhTP

диональные каналы, 5 - ряды гребных пластинок, 6 - щу- "<* КО ШрЫХ СИДЯТ ГЛаВНЫе

пальца, 7 — аборальный орган, 8 — влагалища щупалец, ОрГЭНЫ ДВИЖ6НИЯ Гребне-

9 - каналы, идущие к оральному полюсу BHKQB _ гребные пластин_

ки. Расходясь от абораль-

ного полюса, ребра доходят почти до ротового. Каждое ребро усажено рядом поперечно поставленных четырехугольных небольших пластинок: они прозрачны, тонки и на конце расщеплены наподобие гребешка. Пластинки бьют по воде в одном направлении, действуя наподобие мно­жества маленьких весел, и передвигают животное ротовым полюсом впе­ред. Гистологическое строение пластинок показывает, что каждая состо­ит из ряда слившихся друг с другом крупных ресничек.

От рядов пластинок берут начало бороздки, покрытые ресничками (мерцательные шнуры), которые сливаются затем попарно и в числе четырех направляются к -аборальному полюсу.

Таким образом, гребневики в течение всей жизни движутся при по­мощи измененных ресничек, тогда как у кишечнополостных этот способ движения имеется лишь у личинок, во взрослом же состоянии заменяется мускульным движением.

Большая часть гребневиков снабжена парой щупалец, служащих для захвата добычи. Щупальца имеют вид длинных обычно разветвлен­ных арканчиков и отходят от боков тела в щупальцевой плоскости, одно против другого. Они могут втягиваться в особые ямки — щупаль­цевые влагалища. Захват пищи осуществляется при помощи особых клейких клеток эпителия щупалец. Наружная поверхность клейкой клет­ки имеет вид полушария, покрытого каплями липкого секрета. От осно­вания полушария внутрь щупальца отходит спирально закрученная нить, прикрепленная другим концом к пучку продольных мышц, прохо­дящих по оси щупальца и его ветвей (рис. 119). Мелкие морские орга-


!44



низмы при соприкосновении со щупальцами приклеиваются к клейким клеткам. Если добыча пытается вырваться, то клейкие клетки отходят







Рис. 119. Строение клейкой клетки

гребневика (из Наумова): / — полушария с каплями липкого сек­рета, 2 — спиральная нить, 3 — мус­кульный тяж щупальца

Рис. 120. Схема строения аборального органа (по Кестнеру):

/ — колпачок (колокол) из слившихся ресничек, 2 — дуж­ки, 3—статолит, 4 — мерцательные бороздки

от поверхности щупальца, но остаются соединенными с ним посредст­вом эластичной спиральной нити, которая, как пружина, амортизирует рывки захваченного животного. Пойманная щупальцами добыча захва­тывается подвижными краями широкого рта.

Нервная система гребневиков состоит из поверхностного сплетения нервных клеток, которые под рядами гребных пластинок и мерцательны­ми шнурами образуют более плотные тяжи, идущие к аборальному полюсу. Здесь расположен своеобразный орган чувств, получивший на­звание аборального органа (рис. 120). Основу его составляет утолщение эктодермы в виде подушечки, прикрытой прозрачным колпаком, обра­зующимся из венчика слипшихся между собой длинных ресничек. Внут­ри колпака над поверхностью подушечки расположены 4 крючковидные дужки, образованные длинными слившимися жгутиками, отходящими от рецепторных клеток, связанных с аборальным органом. На дужках подвешен статолит, состоящий из склеенных между собой зерен фос­форнокислого кальция. Основания дужек сообщаются при помощи мер­цательных жгутов с рядами гребных пластинок. Хотя весь этот аппарат трактуется как орган равновесия, он служит также и для регуляции движения. У животного с удаленным аборальным органом движение гребных пластинок нарушается.

Мезоглея гребневиков хорошо развита, прозрачна и водяниста, как у медуз. Гребневики не отличаются яркостью окраски, иногда имеют слегка розовый оттенок. Бьющие, прозрачные гребные пластинки пере­ливаются на общем фоне тела всеми цветами радуги.

Размножение и развитие. Гребневики гермафродиты, причем поло­вые клетки их дифференцируются в энтодерме. По бокам каждого ме­ридионального канала пищеварительной системы залегает с одной сто­роны колбасовидный яичник, с другой — такой же семенник.

Зрелые половые клетки выходят посредством прорыва разделяющей их стенки в просвет меридиональных каналов, а оттуда через рот на­ружу, где и происходит оплодотворение.

Жизненный цикл гребневиков простой, без метаморфоза. Дробление

145

полное, но не равномерное, один полюс зародыша состоит из быстро



Рис. 121. Эмбриональное развитие гребневика Во-linopsis (из Байера). А — ранняя стадия дробле-вия; Б — образование микромеров; В, Г — стадии гасгруляции; Д — продольный разрез молодой ли­чинки; Е — сформированная личинка

дробящихся мелких микро­меров, другой — из медлен­но делящихся макромеров (рис. 121). Микромеры дают эктодерму, макромеры — эн­тодерму. Микромеры обра­стают книзу массу макроме­ров, которая к тому времени обнаруживает на нижнем полюсе впячивание — пер­вичный рот и зачаток гаст-ральной полости. Получает­ся гаструла. По краям бла-стопора эктодерма впячи­вается и образует глотку. В глубине гастральной поло­сти часть клеток энтодермы уходит в промежуток между эктодермой и энтодермой (т. е. в остаток полости бла­стулы) и дает там крестооб­разную группу клеток. Из этих клеток впоследствии формируются клеточные элементы мезоглеи и мус­кульные оси щупалец. Инте­ресно, что здесь мы впервые видим во время развития обособленные зачатки спе­циального третьего клеточ­ного зародышевого пласта — мезодермы. Этим слабым зачатком является выше­упомянутая крестообраз­ная клеточная пластинка.

Классификация. Ctenophora делятся на два подкласса: Tentaculata и Atentaculata. Первые в течение всей жизни или только на ранних стадиях развития имеют щупальца, вторые лишены щупалец на всех стадиях. Большинство видов относится к щупальцевым (Tentaculata). Некоторые из них имеют сильно измененную форму тела, которое вытягивается в поперечном направлении (в глоточной плоскости) в лен­ту до 1,5 м длины; таков «Венерин пояс» — Cestus veneris (рис. 122,5). Большой интерес представляют Platyctenidea. Эти гребневики (рис. 122, В) сплющены по направлению главной оси и не только плава­ют, но могут и ползать по субстрату на уплощенной ротовой стороне. При переходе от плавающего к ползающему образу жизни организация гребневиков претерпевает глубокие изменения. Исключение среди них представляет арктическая форма Tjalfielta (рис. 122,Г), которая ведет сидячий образ жизни. Молодь ее имеет вид типичных гребневиков. Мо­лодое животное садится ртом на субстрат, средняя часть рта зарастает, а его концы вытягиваются кверху в трубки, служащие для захвата пищи. К бесщупальцевым гребневикам относится обычный в северных и дальневосточных морях Вегое сисщтз (рис. 122, Д). Питается он дру­гими гребневиками, заглатывая их широко раскрывающимся ртом.


146



Филогения типа Ctenophora. Гребневики обладают некоторыми при-митивными чертами, например движением при помощи измененных



Рис. 122. Различные представители гребневиков. А — Г — щупальцевые гребневики: А — Cydippe (по Хуну): Б — «Венерин пояс» (Cestus veneris) (по Мейеру); В — ползающий гребневик Coeloplana (по Кюкенталю); Г — сидячий гребневик Tjalfiella (из Догеля); Д — бесщупальцевый гребневик Beroe cucumis (по Наумову)

ресничек. Развитие гребневиков обнаруживает следы закладки мезодер­мы— этим они приближаются к червям. Возможно, что гребневики от­делились от общего с Coelenterata ствола развития до того, как послед­ние стали сидячими животными,

1   2   3   4   5   6   7   8   9   ...   60


написать администратору сайта