Учебник для вузов. Издание второе, дополненное и исправленное Уфа. Ооо ДизайнПолиграфСервис
Скачать 16.32 Mb.
|
18.2. Особенности проектирования нефтебазВопрос о необходимости строительства нефтебазы в конкретном районе решается на основе соответствующего ТЭО. При его подготовке учитываются: 1) потребность предприятий и населения в различных нефтепродуктах с учетом перспектив развития рассматриваемого района и районов, примыкающих к нему; 2) источники поступления нефтепродуктов и расстояния до них; 3) возможные частота и регулярность поставок; 4) действующие укрупненные нормативы капиталовложений и эксплуатационных затрат в объекты нефтебазового хозяйства. На основании планируемого грузооборота нефтебазы с учетом средних значений коэффициента оборачиваемости, показывающего сколько раз в году резервуары полностью заполняются и опорожняются, определяют необходимую емкость резервуарного парка нефтебазы и далее - по укрупненным нормативам - общие капиталовложения. Эксплуатационные расходы определяют как сумму амортизационных отчислений, заработной платы персонала, затрат на текущий ремонт, расходов на топливо, электроэнергию и т.д. Поделив эксплуатационные расходы на грузооборот нефтебазы, находят себестоимость, которая должна быть на уровне величин, имеющих место при эксплуатации передовых нефтебаз, находящихся в аналогичных условиях. Кроме того, в ТЭО определяют производительность труда персонала (реализация продукции, приходящаяся на одного работающего), а также срок окупаемости капитальных вложений. Последний не должен превышать нормативной величины (около 6,5 лет). Земельный участок под нефтебазу чаще всего выбирают на стадии ТЭО. Он должен удовлетворять ряду требований. Так, территория будущей нефтебазы должна находиться от соседних объектов на расстоянии, удовлетворяющем противопожарным требованиям. Желательно, чтобы она находилась с подветренной стороны от населенных пунктов и соседних сооружений, чтобы пары нефтепродуктов не относились на жилые дома, объекты с открытым огнем и т.п. Речные нефтебазы следует располагать ниже по течению от ближайших населенных пунктов, чтобы предотвратить возможное попадание нефтепродуктов в водозабор. Грунты на территории будущей нефтебазы должны обладать достаточной несущей способностью. В задании на проектирование указываются: - месторасположение нефтебазы; - номенклатура нефтепродуктов и годовой грузооборот нефтебазы по основным видам нефтепродуктов при полном развитии и на первую очередь; - основные источники обеспечения нефтебазы нефтепродуктами, водой для хозайственно-питьевых и промышленных нужд, горячей водой, электроэнергией и т.д.; - условия по очистке и сбросу сточных вод; - способ снабжения потребителей нефтепродуктами; - намечаемые сроки строительства нефтебазы; - наименование генеральной проектной организации и строительной организации-генподрядчика и т.д. 18.3. Использование ЭВМ при проектировании трубопроводов и хранилищПроектирование таких протяженных объектов как трубопроводы, пересекающих районы с самыми разнообразными топографическими, геологическими и климатическими условиями, встречающими на пути различные естественные и искусственные препятствия, представляет собой очень непростую задачу. Речь идет о том, чтобы не просто доставить нефть, нефтепродукт или газ из одной точки в другую, а сделать это с минимальными затратами средств на строительство, которое должно завершиться в заданные сроки. Кроме того, проектные решения должны обеспечить высокую надежность работы трубопровода, его экологическую безопасность. Наконец, требования к качеству проектов становятся все более жесткими, а сроки их выполнения - предельно сжатыми. Объем работ, выполняемых при проектировании хранилищ, значительно меньше. Однако здесь также выполняется большое количество однотипных расчетов и чертежей в сжатые сроки. Обеспечить высокое качество выполнения проектных работ в ограниченные сроки без увеличения количества задействованных работников проектных организаций позволяет использование систем автоматизированного проектирования (САПР). САПР объединяет технические средства (ЭВМ, графопостроители и т.д.), математическое, информационное и программное обеспечение, позволяющее автоматизировать проектирование на всех или отдельных стадиях проектирования объектов. Применение ЭВМ для решения отдельных проектных задач началось одновременно с их появлением. Однако оно было эпизодическим, количество решаемых задач было ограничено. В настоящее время с помощью ЭВМ решается широкий круг проектных задач: - выбор оптимальных трассы и конфигурации магистральных трубопроводов; - оптимизация их параметров; - оформление технической документации; - выполнение технико-экономических расчетов. Рассмотрим в качестве примера решение на ЭВМ задачи выбора оптимальной трассы магистрального трубопровода. Пусть заданы начальная А и конечная В точки магистрального трубопровода (рис. 18.1). На первый взгляд наилучшей трассой для него является прямая, проведенная между данными точками, поскольку металлозатраты при этом минимальны. Однако может оказаться, что именно на этом направлении сосредоточено большое количество естественных и искусственных препятствий, преодоление которых потребует значительных затрат. Необходимо выбрать такую трассу трубопровода, при которой общие затраты на его строительство будут наименьшими. Перед поиском оптимальной трассы целесообразно ограничить область ее поиска, чтобы уменьшить объем исходной информации. Но при этом область поиска должна быть такой, чтобы в ней обязательно находилась лучшая трасса, а за ее пределами любая трасса была заведомо худшей. Весь предшествующий опыт строительства трубопроводов показывает, что действительная длина магистрали, как правило, больше длины прямой, соединяющей начальную и конечную точки трассы. Это объясняется тем, что на пути трубопровода встречаются различные препятствия, которые при возможности целесообразно обойти. Обозначим расстояние между начальным и конечным пунктами по геодезической прямой через L(|, а длину реальной трассы через L,. Коэффициент пропорциональности между ними Кр = Ц/ L0 называется коэффициентом развития трассы. По статистическим данным его величина равна: для равнинной местности К^ = 1,05; для средне-пересеченной болотистой местности Кр = 1,03...1,24; для сильнопересеченной местности с большим числом естественных и искусственных препятствий Kt = 1,16...1,4. Если задан максимальный коэффициент развития трассы К , то ее предельно возможную длину можно найти как Lpn.K= К .к • L(J. Таким образом, вводится жесткое ограничение на положение границы области прокладки Ьф < Lm. Все возможные трассы, удовлетворяющие этому условию, должны быть заключены внутри кривой, каждая точка которой удалена от начального и конечного пункта трубопровода, на расстояния, дающие в сумме L MAX. Такой кривой с точки зрения геометрии является эллипс с текущими координатами К, L, M, N, О и фокусами в точках А и В, малая ось которого в принятых обозначениях равна Рис. 18.1. Область поиска оптимальной трассы Рис. 18.2. Сетки, используемые при выборе трасс Из теоретически определенной области поиска сразу же исключаются заведомо нецелесообразные зоны: области, находящиеся за начальной и конечной точками трассы, территории городов, поселков, заповедников, карьеров и т.п. На рис. 18.1 они заштрихованы. Для поиска оптимальной трассы трубопровода на ЭВМ необходимо представить все многообразие условий местности в виде цифровой модели. Для этого на карту местности наносится сетка: прямоугольная без диагоналей, прямоугольная с диагоналями или произвольная (рис. 18.2). Точку, в которой сходятся более двух линейных элементов сетки, называют узлом, а линию между двумя смежными узлами - дугой. Чтобы зафиксировать элементы сетки друг относительно друга все дуги и узлы нумеруют (рис. 18.3), после чего определяют координаты узлов сетки на местности. Эта операция позволяет увязать произвольно нанесенную сетку с картой. Далее начинается самая кропотливая работа: вдоль каждой дуги определяется протяженность участков местности различных категорий. Всего по условиям и стоимости строительства выделено 79 категорий, например: 1-я - грунт песчаный без леса с низким стоянием грунтовых вод, 12-я - грунт плывунный, 32-я - переход через автомобильные и железные дороги, 35-я - орошаемые земли и т.д. Пример обработки карты местности показан на рис. 18.4. Верхняя цифра обозначает категорию местности, а нижняя -протяженность участка данной категории в километрах. Благодаря этой операции карта заменяется цифровой моделью местности, ко: торую вводят в компьютер в виде базы данных. Далее ЭВМ просчитывает стоимость прокладки магистрального трубопровода из начальной точки в конечную по всем возможным направлениям и выбирает как наилучший вариант, более других соответствующий выбранном}' критерию оптимальности (минимальные затраты на строительство, наименьшие металлозатраты, кратчайшие сроки сооружения трубопровода и т.д.). Рис. 18.3. Пример нумерации дуг сетки Рис. 18.4. Пример определения длин участков различной категории вдоль дуг (Верхние цифры обозначают номер категории участка, а нижние - длину участку данной категории в км.) |