Главная страница
Навигация по странице:

  • Рис. 3.26.

  • Рис. 3.28.

  • Первый закон Ньютона

  • Дубровский В.И., Федорова В.Н. Биомеханика. Учебник для вузов


    Скачать 6.47 Mb.
    НазваниеУчебник для вузов
    АнкорДубровский В.И., Федорова В.Н. Биомеханика.doc
    Дата28.01.2017
    Размер6.47 Mb.
    Формат файлаdoc
    Имя файлаДубровский В.И., Федорова В.Н. Биомеханика.doc
    ТипУчебник
    #922
    страница11 из 65
    1   ...   7   8   9   10   11   12   13   14   ...   65

    3.8. Элементы описания движения человека


    Движения человека носят сложный характер и с трудом поддаются описанию. Однако в ряде случаев можно выделить существенные моменты, отличающие одни виды движений от других. Рассмотрим, например, чем отличается бег от ходьбы.

    Элементы шагательных движений при ходьбе представлены на рис. 3.26. В шагательных движениях каждая нога поочередно бывает опорной и переносной. В опорный период входят амортизация (торможение движения тела по направлению к опоре) и отталкивание, в переносной — разгон и торможение.

    Последовательные движения тела человека и его ног при ходьбе представлены на рис. 3.27.



    Рис. 3.26. Элементы шагательного движения



    Рис. 3.27. Последовательные движения тела человека при ходьбе
    Линии А и В дают качественное изображение движения стоп ног в процессе ходьбы. Верхняя линия А относится к одной ноге, нижняя линия В — к другой. Прямые участки соответствуют моментам опоры стопы о землю, дугообразные участки — моментам движения стоп. В течение промежутка времени (а) обе ноги опираются на землю; затем (b) — нога А в воздухе, нога В продолжает опираться; а после (с) — вновь обе ноги опираются о землю. Чем быстрее ходьба, тем короче становятся промежутки (a и c).

    На рис. 3.28 представлены последовательные движения тела человека при беге и графическое изображение движений стоп. Как видно на рисунке, при беге существуют промежутки времени (b, d, f), когда обе ноги находятся в воздухе, а промежутков одновременного касания ног земли нет. Этим и отличается бег от ходьбы.



    Рис. 3.28. Последовательные движения тела человека при беге


    Рис. 3.29. Силы, действующие на опору при отталкивании
    Другим распространенным видом движения является отталкивание от опоры при различных прыжках. Отталкивание совершается за счет выпрямления толчковой ноги, маховых движений рук и туловища. Задача отталкивания — обеспечить максимальную величину вектора начальной скорости общего центра масс спортсмена и его оптимальное направление. На рис. 3.29 показаны фазы процесса отталкивания и соответствующие им силы (горизонтальная — Frи вертикальная — fb), с которыми спортсмен т = 70 кг действует на опору при прыжке в длину. Видно, что эти силы значительно превышают вес спортсмена.

    Глава 4 ДИНАМИКА ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ



    Динамикой называется раздел механики, в котором изучается движение тела с учетом его взаимодействия с другими телами.

    В разделе «Кинематика» были введены понятия скорости и ускорения материальной точки. Для реальных тел эти понятия нуждаются в уточнении, так как для различных точек реального тела эти характеристики движения могут быть различны. Например, закрученный футбольный мяч не только движется вперед, но и вращается. Точки вращающегося тела движутся с разными скоростями. По этой причине сначала рассматривается динамика материальной точки, а затем полученные результаты распространяются на реальные тела.

    4.1. Первый закон Ньютона. Инерциальная система отсчета



    В различных системах отсчета движение одного и того же тела выглядит по-разному и от выбора системы отсчета во многом зависит простота или сложность описания движения. Обычно в физике используют инерциальную систему отсчета, существование которой установил Ньютон, обобщив опытные данные.

    Первый закон Ньютона

    Существует система отсчета, относительно которой тело (материальная точка) движется равномерно и прямолинейно или сохраняет состояние покоя, если на него не действуют другие тела. Такая система называется инерциальной.

    Если тело неподвижно или движется равномерно и прямолинейно, то его ускорение равно нулю. Поэтому в инерциальной системе отсчета скорость тела изменяется только под воздействием других тел. Например, футбольный мяч, катящийся по полю, через некоторое время останавливается. В данном случае изменение его скорости обусловлено воздействиями со стороны покрытия поля и воздуха.

    Инерциальных систем отсчета существует бесчисленное множество, потому что любая система отсчета, которая движется относительно инерциальной системы равномерно прямолинейно также является инерциальной.

    Во многих случаях инерциальной можно считать систему отсчета, связанную с Землей.
    1   ...   7   8   9   10   11   12   13   14   ...   65


    написать администратору сайта