умкд по астрономии. УМКД ОУД.08 Астрономия 2.26.02.03 (набор 2017). Учебнометодический комплекс дисциплины Физика Индекс (Файл) mcd 3 26. 02. 03 Оуд. 082017 г
Скачать 4.37 Mb.
|
Жидкостный ракетный двигатель (ЖРД) - РД, работающий на жидком ракетном топливе. Предложен К. Э. Циолковским в 1903 году. Основной двигатель современной космической техники. Тяга от долей грамма до сотен тонн. По назначению ЖРД делятся на основные (маршевые), тормозные, корректирующие и т. д. В качестве топлива применяют: из окислителей - кислород жидкий, четырехокись азота, перекись водорода; из горючих - керосин, гидразин, аммиак жидкий, водород жидкий. Наиболее перспективны сочетание жидких водорода и кислорода (РН "Энергия") (рис. 75). Для увеличения удельной тяги перспективно использование ядерной энергии. Экспериментальные образцы ядерных ракетных двигателей (ЯРД) разрабатывались с середины 60-х годов в СССР и США. В настоящее время Россия является единственным государством, располагающим маршевым ЯРД (рис. 76). Продолжаются разработки электрических РД (ЭРД) - электротермических, электромагнитных, ионных. Первые экспериментальные образцы ЭРД были созданы в СССР в 1929-30 г.г.; в настоящее время ЭРД используются в качестве двигателей ориентации КЛА России и США. Маршевый ионный двигатель установлен на АМС, запущенной в конце 90-х гг. в США (рис. 77). С точки зрения механики космического полета РД разделяются на: 1. Двигательные системы с ограниченной скоростью истечения w » 3 - 30 км/с, определяемой наибольшей температурой реактивной струи (химические, ядерные и т. д.). Они работают непродолжительное время (минуты, секунды) в атмосфере и вакууме на малых активных участках траектории полета (сотни км). 2. Системы ограниченной мощности с отдельным источником энергии, от которого зависит их эффективность (электрические и др.). 3. Системы с ограниченной тягой (парусные и радиоизотопные). На активных участках полета движение КЛА зависит от работы его двигателей; на пассивных участках траекторий на движение КЛА влияют силы притяжения со стороны космических тел, давление света и солнечный ветер, а в верхних слоях атмосфер - аэродинамические силы трения. Основные характеристики пассивного движения КЛА можно определить при решении задачи 2-х тел. В центральном поле тяготения массивных космических тел КЛА движутся по кеплеровским орбитам, причем: 1. Траектория движения КЛА прямолинейна в случае, когда его начальная скорость u 0 = 0 и КЛА равноускоренно падает к центру притяжения. 2. КЛА движутся по эллиптическим траекториям, когда начальная скорость направлена под углом к центру притяжения, при . По эллиптическим орбитам вокруг Земли движутся ее ИСЗ, современные космические корабли и орбитальные станции, а также АМС, вращающиеся вокруг исследуемых ими планет. 3. По параболическим траекториям при u0 = uII, когда конечная скорость КЛА в бесконечно удаленной точке пространства равна нулю. 4. По гиперболическим траекториям (u0 > uII), почти неотличимым от прямолинейных на большом удалении от центра притяжения. Траектории межпланетных полетов различаются по форме, длительности перелета, энергетическим затратам и другим факторам, зависящим от цели и особенностей космического полета. Интересно отметить, что КЛА практически никогда не движутся по прямой линии: траектории их движения (кроме некоторых идеализированных случаев) представляют собой отрезки кривых II порядка (окружности, эллипса, параболы и гиперболы), соединяющие орбиты космических тел или сами тела. Выделяют 3 пассивных участка траекторий межпланетных полетов: 1) внутри "сферы действия" Земли, в которой движение КЛА определяется только силой земного притяжения; 2) от границы сферы действия Земли до границы сферы действия космического тела - цели полета, самому длинному и продолжительному, на котором движение КЛА определяется притяжением Солнца; 3) внутри сферы действия космического тела - цели полета. Выше уже отмечалось, что для выхода из сферы действия Земли КЛА должен иметь скорость u > uII;. Добавочная скорость, которую находящийся на орбите искусственного спутника КЛА должен обрести для того, чтобы выйти из сферы действия Земли, называется скоростью выхода u в. , где r - расстояние от космического тела, RдÅ - радиус сферы действия Земли (RдÅ = 925000 км). При запуске КЛА с поверхности Земли необходимо учитывать: 1) скорость и направление вращения Земли вокруг своей оси; 2) скорость и направление вращения Земли вокруг Солнца (uÅ = 29,785 км/с). Весьма сложен требующий больших энергетических затрат запуск ИСЗ, вращающихся в направлении, противоположном направлению вращения Земли вокруг своей оси; более сложен запуск КЛА по траектории, не лежащей в плоскости эклиптики.
Если скорость выхода совпадает по направлению со скоростью движения Земли vÅ, орбита КЛА, кроме перигелия, лежит вне орбиты Земли (рис. 79в). При противоположной направленности скорости uв орбита КЛА, за исключением афелия, лежит внутри орбиты Земли (рис. 79а). При той же направленности и равенстве скоростей uв = uÅ орбита КЛА становится прямой, по которой КЛА будет падать на Солнце около 64 суток (рис. 79г). При uв = 0 орбита КЛА совпадает с орбитой Земли (рис. 79б). Чем выше скорость uв КЛА, тем больше эксцентриситет его эллиптической орбиты. Путем сравнительно несложных расчетов определяется значение vв, необходимое для того, чтобы перигелий или афелий орбит КЛА лежал на орбите внешней или внутренней планет,. Траектории полета КЛА, одновременно касающиеся орбит Земли и космических тел - целей межпланетного полета, называются гомановскими траекториями (в честь рассчитавшего их немецкого ученого В. Гоманна). Для внешних планет: . Для внутренних планет: , где r - среднее расстояние планетного тела от Солнца. Продолжительность перелета по гомановской траектории рассчитывается по формуле: средних солнечных суток. При расчетах траектории межпланетного полета по гомановским траекториям необходимо учитывать взаимное расположение (начальную конфигурацию) Земли, Солнца и планеты-цели, характеристики и особенности движения планет по их орбитам. Например, полет к Марсу по кратчайшей гомановской траектории займет всего 69,9d, к Юпитеру - 1,11 года, к Плутону - 19,33 года. Однако реально оптимальное взаимное положение Земли, Солнца и этих планет происходит исключительно редко и для уменьшения времени перелета требуется повысить uв, что требует дополнительных энергозатрат. Поэтому, в числе прочих причин, пилотируемые полеты к планетам Солнечной системы существенно дороже и сложнее, нежели исследование этих планет с помощью АМС, которые могут годами лететь к своим целям по самым экономичным траекториям. С учетом действия возмущений со стороны планет и Солнца АМС и космические корабли должны иметь двигатели для корректировки траектории движения. При достижении сферы действия планеты-цели, для выхода на эллиптическую или круговую орбиту вокруг нее КЛА должен уменьшить скорость до значения, меньшего II космической для данной планеты. В межпланетной навигации широко используется маневр КЛА в гравитационном поле планет Солнечной системы. При движении в центральном поле тяготения массивного космического тела на КЛА действует сила притяжения со стороны этого тела, изменяющая скорость и направление движения КЛА. Направленность и величина ускорения КЛА зависят от того, насколько близко пролетит КЛА от космического тела и от угла j между направлениями входа и выхода КЛА в сферу действия этого тела. Скорость КЛА изменяется на величину: Наибольшее ускорение КЛА приобретает при движении по траектории, проходящей на минимальном расстоянии от космического тела, если скорость входа КЛА в сферу действия равна I космического скорости uI у поверхности этого тела, при этом . При облете Луны КЛА может увеличить свою скорость на 1,68 км/с, при облете Венеры - на 7,328 км/с, при облете Юпитера - на 42,73 км/с. Скорость выхода КЛА из сферы действия планеты можно значительно увеличить включением двигателей в момент прохождения перицентра. На рис. 80-81 приведены некоторые расчетные траектории межпланетных перелетов.
|