Главная страница
Навигация по странице:

  • Основные вопросы, разбираемые на занятии

  • План Программа

  • Задание студентам 1. Заполнить таблицу: Классификация вакцин

  • Информационный материал. Иммуно-люминесцентный метод (ИЛМ, РИФ)

  • Сущность и классификация МФА

  • Иммуноферментный анализ

  • Сущность и классификация

  • Основные типы тест-систем в зависимости от используемых антигенов

  • Иммуноблоттинг (выявление антител в сыворотках больных к определенным антигенам возбудителя).

  • Радио-иммунный метод (РИМ)(Радиоиммунологический анализ, РИА)

  • Таблица 1.Классификация вакцин

  • Список литературы: Обязательная

  • Учебное пособие - Иммунология. Учебнометодическое пособие для студентов медицинских вузов Иммунология составлено в соответствии с программой для студентов 2 курса специальности Лечебное дело по иммунологии 2010 г


    Скачать 0.51 Mb.
    НазваниеУчебнометодическое пособие для студентов медицинских вузов Иммунология составлено в соответствии с программой для студентов 2 курса специальности Лечебное дело по иммунологии 2010 г
    АнкорУчебное пособие - Иммунология.doc
    Дата19.05.2017
    Размер0.51 Mb.
    Формат файлаdoc
    Имя файлаУчебное пособие - Иммунология.doc
    ТипУчебно-методическое пособие
    #7962
    страница6 из 7
    1   2   3   4   5   6   7
    Тема№ 7: ИММУНИТЕТ: ИММУННЫЕ РЕАКЦИИ С ИСПОЛЬЗОВАНИЕМ МЕЧЕНЫХ АНТИТЕЛ ИЛИ АНТИГЕНОВ. ИММУНОБИОЛОГИЧЕСКИЕ ПРЕПАРАТЫ.
    Цель: Изучить основные иммунобиологические препараты, их особенности, получение и применение в медицине. Получить представление о принципах приготовления диагностических препаратов, меченых флюорохромами, радиоактивными элементами, ферментами; чувствительности отдельных иммунных реакций и областях их применения..

    Основные вопросы, разбираемые на занятии:

    1. Вакциопрофилактика и вакцинотерапия.

    2. Состав и классификация вакцин.

    3. Живые вакцины, получение и применение.

    4. Инактивированные вакцины, получение и применение.

    5. Синтетические и полусинтетические вакцины, получение и применение.

    6. Ассоциированные вакцины.

    7. Календарь профилактических прививок.

    8. Серопрофилактика и серотерапия.

    9. Сывороточные иммунные препараты.

    10. Получение и применение моноклональных антител.

    11. Иммуномодуляторы.

    12. Реакции с мечеными диагностическими компонентами (ИЛМ, РИФ, ИФА, РИА, иммуноблоттинг).

    План

    Программа

    1. Состав и классификация вакцин

    2. Сывороточные иммунные препараты, состав и классификация.

    3.Иммуномодуляторы

    4. Реакции с мечеными диагностическими компонентами

    Демонстрации.

    1. Вакцинные иммунобиологичские препараты, применяемые в РФ.

    2. Сывороточные иммунобиологические препараты, применяемые в РФ

    3. Схема получения моноклональных антител

    4. Иммуноферментные тест-системы

    Задание студентам

    1. Заполнить таблицу: Классификация вакцин

    2. Определить, к какой группе вакцин относится выданный иммунобиологический препарат, рассказать о способе его получения, дать характеристику иммунитета, индуцированного этим препаратом

    3. Определить, к какой группе сывороточных препаратов относится выданный иммунобиологический препарат, рассказать о способе его получения, дать характеристику иммунитета, индуцированного этим препаратом.

    4. Зарисовть схему получения моноклональных антител

    Информационный материал.

    Иммуно-люминесцентный метод (ИЛМ, РИФ) Метод флуоресцирующих антител (МФА, иммунофлуоресценция) (англ. Immunofluorescence) — лабораторный иммунологический метод качественного определения антигена по известному глобулину или антител по известному антигену.

    Сущность и классификация МФА

    Сущность метода флюоресцирующих антител заключается в визуализации реакции антиген-антитело люминесцентными маркерами. Метод конъюгации глобулинов с органическими флюорохромами разработан в 1942 году А. Кунсом.

    Различают МФА прямой, разработанный А. Кунсом и Мелвином Капланом, МФА непрямой, разработанный А. Кунсом и Уиллером и непрямой МФА с комплементом.

    При прямом методе (пМФА) на препарат с антигеном наносят известную, предположительно соответствующую ему, люминесцирующую сыворотку. В случае образования комплекса, он обнаруживается, люминесцентной микроскопией в виде зеленоватого свечения разной степени интенсивности и четкости.

    При непрямом методе (нМФА) на мазок из наслоения антигена и немеченой сыворотки наносят антиглобулиновую (видовую по отношению к диагностической сыворотке) люминесцирующую сыворотку. В случае образования комплекса антиген-антитело, последний компонент реагирует с видовой антиглобулиновой люминесцирующей сывороткой. При нМФА с комплементом, его добавляют к комплексу антиген-антитело и идентифицируют образование тройного комплекса по люминесцирующей антикомплементарной сыворотке.

    Результаты описываются в так называемых «крестах» (от одного + до четырех ++++) — субъективная градация исследователем степени выраженности реакции. Непрямые методы требуют наличия только антиглобулиновых видовых сывороток с флюорохромами, но при этом необходимо большое количество тестовых контролей. При постановке прямым методом делается только один контроль, но требуется множество моноспецифических сывороток. Недостатками всех видов МФА является ограниченная чувствительность из-за наличия возможных перекрестных реакций между близкими по антигенному составу объектами и неспецифическая флуоресценция вследствие адсорбции флуоресцирующих глобулинов на различных элементах препарата. В настоящее время используются коммерческие стандартные конъюгаты, содержащие глобулины к исследуемым антигенам. Метод флуоресцирующих антител
    Иммуноферментный анализ (сокращённо ИФА, (англ. enzyme-linked immunosorbent assay, ELISA) — лабораторный иммунологический метод качественного или количественного определения различных соединений, макромолекул, вирусов и пр., в основе которого лежит специфическая реакция антиген-антитело. Выявление образовавшегося комплекса проводят с использованием фермента в качестве метки для регистрации сигнала.

    Сущность и классификация

    Из-за разнообразия объектов исследования — от низкомолекулярных соединений до вирусов и бактерий, и многообразия условий проведения ИФА существует большое количество вариантов этого метода.

    Возможна классификация по типу иммунохимического взаимодействия на первой стадии анализа (в которой происходит связывание определяемого вещества). Если в системе присутствуют только анализируемое соединение и соответствующие ему центры связывания (антиген и специфические антитела), то метод является неконкурентным. Если же на первой стадии в системе одновременно присутствует анализируемое соединение и его аналог (меченное ферментом анализируемое соединение или анализируемое соединение, иммобилизованное на твердой фазе), конкурирующие за ограниченное количество центров специфического связывания, то метод является конкурентным.

    Примером неконкурентного формата ИФА является «сэндвич»-метод. К носителю с иммобилизованными антителами добавляют раствор, содержащий анализируемый антиген. В процессе инкубации на первой стадии на твердой фазе образуется комплекс антиген-антитело. Затем носитель отмывают от несвязавшихся компонентов и добавляют меченные ферментом специфические антитела. После вторичной инкубации и удаления избытка конъюгата антител с ферментом определяют ферментативную активность носителя, которая пропорциональна начальной концентрации исследуемого антигена. На стадии выявления специфического иммунокомплекса антиген оказывается как бы зажатым между молекулами иммобилизованных и меченных антител, что послужило поводом для широкого распространения названия «сэндвич»-метод. Ферментативная реакция (цветная реакция) проходит в присутствии перекиси водорода и субстрата, представленного неокрашенным соединением, которое в процессе пероксидазной реакции окисляется до окрашенного продукта реакции на заключительном этапе проведения исследования. Интенсивность окрашивания зависит от количества выявленных специфических антител. Результат оценивается спектрофотометрически или визуально.

    «Сэндвич»-метод может быть использован для анализа только тех антигенов, на поверхности которых существуют, по крайней мере, две антигенные детерминанты. На этом формате основано большое количество тест-систем для иммуноферментной диагностики различных инфекций: ВИЧ-инфекция, вирусные гепатиты, цитомегаловирусная, герпесная, токсоплазменная и другие инфекции.

    Среди конкурентных схем твердофазного ИФА существует два основных формата:

    1. Прямой конкурентный формат ИФА использует иммобилизованые на твердой фазе специфические антитела, а меченый ферментом и немеченыйантиген конкурируют за связь с иммобилизованным антителом.
      К иммобилизованным антителам добавляют раствор, содержащий определяемое вещество и фиксированную концентрацию меченого антигена, инкубируют и после отмывки носителя от несвязавшихся компонентов регистрируют ферментативную активность образовавшихся на твердой фазе специфических иммунных комплексов. Величина детектируемого сигнала находится в обратной зависимости от концентрации антигена.
      Преимуществом прямой схемы является небольшое число стадий, что позволяет легко автоматизировать анализ. К недостаткам схемы относятся сложность методов синтеза ферментных конъюгатов, а также возможное влияние компонентов образца на активность фермента.

    2. В непрямом конкурентном формате ИФА используются меченные ферментом антитела (специфические или вторичные) и иммобилизованный на твердой фазе конъюгат антиген-белок-носитель.
      Непрямая схема с использованием меченых антивидовых антител является одной из наиболее распространенных схем ИФА. На поверхности носителя иммобилизуют конъюгат антиген-белок, к которому добавляют раствор, содержащий определяемый антиген и фиксированную концентрацию немеченых специфических антител, инкубируют и после удаления несвязавшихся компонентов добавляют фиксированную концентрацию меченых антивидовых антител. После инкубации и отмывки носителя детектируют ферментативную активность образовавшихся на твердой фазе специфических иммунных комплексов, причем величина сигнала находится в обратно-пропорциональной зависимости от концентрации определяемого антигена.
      Применение универсального реагента — меченых антивидовых антител — даёт возможность выявлять антитела к разным антигенам. Кроме того, анализируемый образец и меченый реагент вводятся в систему на разных стадиях, что устраняет влияние различных эффекторов, содержащихся в образце, на каталитические свойства ферментной метки. Однако такая схема анализа усложняет его проведение из-за введения дополнительных стадий.

    Как любые иммунохимические методы анализа, ИФА может давать ложноположительные и ложноотрицательные результаты. Например, ложноположительные результаты при определении антител к различным инфекциям могут возникнут за счёт ревматоидного фактора, представляющего собой иммуноглобулин M против собственных иммуноглобулинов G человека; за счёт антител, образующихся при различных системных заболеваниях, нарушениях обмена или приёме лекарственных препаратов; у новорождённых такие ложноположительные реакции могут возникать за счёт образования в организме ребёнка M-антител к иммуноглобулину G матери. Помимо этого, причиной ложнопололожительных результатов может быть синдром поликлональной активации. При этом, особые вещества — суперантигены — неспецифически стимулируют выработку B-лимфоцитами антител к различным инфекциям. Практически это выражается в неспецифическом нарастании титра антител сразу ко многим возбудителям. Ложноотрицательные результаты при определении антител могут быть обусловлены состояниями иммунодефицита, а также техническими ошибками при постановке реакции.

    Таким образом, за счёт несомненных преимуществ иммуноферментного анализа: удобства в работе, быстроты, объективности за счёт автоматизации учёта результатов, возможности исследования иммуноглобулинов различных классов (что важно для ранней диагностики заболеваний и их прогноза) в настоящее время является одним из основных методов лабораторной диагностики.

    Основные типы тест-систем в зависимости от используемых антигенов

    В зависимости от того, какие антигены используются, иммуноферментные тест-системы подразделяются на:

    1. Лизатные — в которых используется смесь нативных антигенов (лизированный или обработанный ультразвуком возбудитель инфекции, полученный в культуре);

    2. Рекомбинантные — в которых используются полученные генно-инженерным способом белки-аналоги определённых белковых антигенов возбудителя;

    3. Пептидные — использующие химически синтезированные фрагменты белков.

    Общее направление развития ИФА-диагностикумов — это направление от лизатных тест-систем, которые принято называть тест-системами первого поколения, к рекомбинантным и пептидным.

    Технология получения рекомбинантных белков позволяет получить в достаточно чистом виде аналог практически любого отдельного антигена.

    Для создания высококачественной рекомбинантной тест-системы необходимо из всего антигенного многообразия возбудителя выбрать антигены, которые были бы иммуногенными (то есть, в организме инфицированного человека должны вырабатываться антитела к этим антигенам) и высоко специфичными (то есть, характерными лишь для данного возбудителя и, по возможности, не дающими перекрёстных реакций с антителами к другим антигенам).

    Кроме того, большое значение имеет качество очистки рекомбинантных белков. В идеальном случае возможно получение рекомбинантной тест-системы практически со 100%-ной специфичностью при высокой чувствительности.

    На практике этого не всегда удаётся достичь, однако специфичность лучших рекомбинантных тест-систем приближается к 100 %.
    Иммуноблоттинг (выявление антител в сыворотках больных к определенным антигенам возбудителя).
    Иммуноблоттинг (иммуноблот) - высокоспецифичный и высокочувствительный референтный метод, подтверждающий диагноз для пациентов с положительными или неопределенными результатами анализов, полученных в т.ч. при помощи РИГА или ИФА. Иммуноблоттинг - разновидность гетерогенного иммунного анализа.

    Этот метод выявления антител к отдельным антигенам возбудителя основан на постановке ИФА на нитроцеллюлозных мембранах, на которые в виде отдельных полос нанесены специфические белки, разделенные гель-электрофорезом. Если имеются антитела против определенных антигенов -появляется темная линия в соответствующем локусе стрипа. Уникальность иммуноблота заключается в его высокой информативности и достоверности получаемых результатов.

    Материалом для исследования является сыворотка или плазма крови человека. Для исследования на одном стрипе необходимо 1,5-2 мл крови или 15-25 мкл сыворотки.

    ООО "Лабораторная диагностика" использует иммуноблоттинговые наборы для выявления антител к возбудителям различных заболеваний фирмы "EUROIMMUN" (Германия), "MIKROGEN" (Германия):

    • ВПГ 1 и ВПГ 2 IgM/IgG (герпесвирусная инфекция)

    • ЦМВ IgM/IgG (цитомегаловирусная инфекция)

    • Краснуха IgG

    • TORCH-профиль IgM (Токсоплазмоз, Краснуха, Цитомегаловирус, ВПГ 1 и ВПГ 2)

    • ВЭБ IgMTIgG (вирусная инфекция Эпштейна-Барра)

    • ВГС IgG (вирусный гепатит С)

    Используют наборы двух типов - вестерн-блот и лайн-блот.

    Вестерн-блот: Наборы содержат тестовые стрипы-мембраны с электрофоретически разделенными нативными антигенами соответствующих инфекционных агентов, т.о. антигены располагаются в порядке молекулярной массы . На мембраны могут быть также нанесены 1-2 дополнительные линии с клинически значимыми антигенами (вестерн-лайн блот). Это надежный подтверждающий метод, исключает ложноположительные ответы и перекрестные реакции.

    Лайн-блот: В этом случае на тестовые стрип-мембраны нанесены только клинически значимые антигены (нативные, синтетические или рекомбинантные) в определенном порядке. Такой подход используется при дифференциальной диагностике нескольких инфекций на одном стрипе .

    Сущность его заключается в переносе молекул исследуемого вещества с одного твердого носителя, используемого для фракционирования биополимеров, на другой, где с помощью иммунохимической реакции происходит их специфическое выявление. Современный высокочувствительный метод заключается в идентификации белков, в том числе вирусных антигенов. Метод основан на комбинации гель-электрофореза и реакции антиген-антитело. Высокая степень разрешения достигается за счет электрофоретического разделения белков, глико- и липопротеинов и максимальной специфичностью детектирующих иммунных сывороток или моноклональных антител. В оптимально отработанных условиях иммуноблотингом можно обнаруживать антиген в количествах менее 1 нг в испытуемом объеме. Технически иммуноблотинг выполняется в три приема:

    1) подлежащие анализу белки подвергаются разделению в полиакриламидном геле в присутствии денатурирующих веществ: додецилсульфата натрия или мочевины, этот процесс часто обозначают как SDS-PAGE; разделенные белки могут визуализироваться после окрашивания и сравниваться с эталонными образцами;

    2) разделенные белки переносятся с геля путем наложения (блотинга) на
    нитроцеллюлозный фильтр и фиксируются на нем; во многих случаях, но
    не всегда, при переносе сохраняются количественные соотношения белков;

    3) на фильтры наносятся детектирующие поли- или моноклональные
    антитела, содержащие радиоизотопную или ферментную метку; для
    обнаружения связавшихся антител применяют также антивидовую
    меченую сыворотку, иными словами, на заключительном этане блотинг
    аналогичен твердофазным иммунологическим тестам.

    Следует иметь в виду, что в данной постановке иммуноблотинга белки находятся в денатурированном состоянии, и поэтому могут не распознаваться антителами, специфическими по отношению к нативному белку, но зато при наличии сывороток ко всем составляющим пептидам одновременно выявляется весь антигенный спектр испытуемого белка. Иммуноблотинг достаточно широко используется в исследованиях строения вирусов гепатитов, в частности, для установления антигенного родства между отдельными штаммами. Высокая разрешающая способность иммуноблотинга позволяет получать хорошие результаты и в диагностической практике, когда требуется идентифицировать вирус в тканях или экскретах больного.

    В зависимости от исследуемого вещества различают ДНК,— РНК и белок — блоттинг.

    Иммунохимическое выявление антигенов можно проводить с помощью антител, конъюгированных с меткой. В качестве метки в последнее время широко применяют либо радиоактивные изотопы, либо ферменты (пероксидазу, щелочную фосфатазу, лактамазу и др.).

    Время блоттинга путем диффузии составляет 36—48 ч. Но наиболее быстрый и эффективный способ переноса белков с гелей — электроблот, время которого, в основном, составляет 1—3 ч , для некоторых высокомолекулярных белков— более 12 ч.

    Конкретный выбор сорбентов для различных модификаций блотов (нитроцеллюлоза либо бумага, обработанная соответствующим образом), выбор условий блокирования и иммуно-химического выявления антигенов полностью зависит от антигена, его количества, метода иммуноанализа и целей исследования.

    Возможность обнаружить антитела к конкретным антигенам возбудителя позволяет оценить значимость этих антител (специфичность для данного этиологического агента), исключить реакцию на перекрестные антигены. Это и отличает иммуноблоттинг от ИФА, где в качестве антигена могут быть использованы различные комбинации антигенных детерминант - как специфичные, так и нет, дающих перекрестные реакции с другими возбудителями. В другом случае, при получении положительного результата в ИФА можно только предполагать, что он является следствием перекрестного реагирования, а в случае иммуноблоттинга это доказательно

    Метод ИБ по целому ряду обстоятельств получил наибольшее распространение как метод, пригодный для использования в качестве теста подтверждения.

    Безусловное достоинство метода — возможность тестирования антител к слабо или вовсе нерастворимым антигенам и исключение стадии введения радиоактивной метки в антигены.

    О чувствительности в случае ИБ судят по предельному количеству нанесенного на гель антигена, которое при фракционировании белков удается выявить иммунохимически после переноса с геля на твердую фазу (нитроцеллюлозу). Общая чувствительность анализа зависит от целого ряда причин: условий фракционирования и иммобилизации антигена на твердом носителе, уровня фона, специфичности и аффинности антител. Важное значение имеет вид используемой метки и способ ее выявления.

    Таким образом, метод иммуноблотинга позволяет идентифицировать зоны антигена на твердой фазе, не связывая весь белок с антителами специфической сыворотки. Иммуноблотинг и его модификации в основном используются для типирования бактериальных и вирусных антигенов и антител, особенно в случае недостаточной разрешающей способности обычных систем, а также при анализе иммуноглобулинов, нуклеиновых кислот или как тест подтверждения в сочетании с другими методами.

    Большие трудности интерпретации результатов перекресных при реакциях и в случаях начальных стадий сероконверсии. В первой ситуации при повторном исследовании через промежуток определенный времени антитела не выявляются, а во в втором иммуноблоте появляются новые полосы, свидетельствующие о антител появлении к протеинам или гликопротеидам ВИЧ, характеризуя ответной динамику иммунной реакции на антигены вируса.

    Является фактически конечным верификационным методом в цепи серологических исследований, позволяющих сделать окончательное заключение о ВИЧ-позитивности пациента или же отвергнуть таковую. Для постановки ИБ используют нитроцеллюлозные полоски, на которые методом горизонтального и затем вертикального иммунофореза заранее перенесены белки ВИЧ в порядке нарастания их молекулярных масс. Антитела испытываемых сывороток взаимодействуют с белками определенных зонах полоски. Дальнейший ход реакции не отличается от такового для ИФА, то есть предусматривает обработку полоски (стрипа) конъюгатом и хромоген-субстратом с отмыванием не связавшихся компонентов и прекращением реакции дистиллированной водой. Предварительное электрофоретическое разделение белков и их фиксация на нитроцеллюлозе позволяет идентифицировать антитела к конкретным белкам в соответствии с наличием (или отсутствием) окрашивания (серовато-голубого) соответствующих зон полоски. Иммуноблотинг не может использоваться для массового скрининг исследования вследствие высокой стоимости и является методом индивидуального арбитража на заключительном этапе серологического исследования.

    Существует достаточно четкие корреляции между результатами исследования сывороток в ИБ и ИФА. Дважды положительные в ИФА (в разных тест-системах) сыворотки интерпретируются затем в ИБ как ВИЧ-позитивные в 97-98% случаев. Сыворотки, положительные в ИФА лишь в одной из двух использованных тест-системах, оказываются ВИЧ-позитивными в ИБ не чаще, чем в 4% случаев. При проведении подтверждающих исследований около 5% ИБ могут давать так называемые "неопределенные" результаты, которым, как правило, соответствуют положительные ИФА, но не РИП. Примерно в 20% случаев "неопределенные" ИБ вызывают антитела к gag- белкам ВИЧ-1 (р55, р25, р18). [3] При получении сомнительных результатов иммуноблотинга необходимо исследование повторить через 3 месяца и при сохранении неопределённости результата - через 6 месяцев.

    Радио-иммунный метод (РИМ)(Радиоиммунологический анализ, РИА) Радиоиммунный анализ - метод количественного определения биологически активных веществ, (гормонов, ферментов, лекарственных препаратов и др.) в биологических жидкостях, основанный на конкурентном связывании искомых стабильных и аналогичных им меченных радионуклидом веществ со специфическими связывающими системами. Последними чаще всего являются специфические антитела. В связи с тем, что меченый антиген добавляют в определенном количестве, можно определить часть вещества, которая связалась с антителами, и часть, оставшуюся несвязанной в результате конкуренции с выявляемым немеченым антигеном. Исследование выполняют in vitro. Для Р. а. выпускают стандартные наборы реагентов, каждый из которых предназначен для определения концентрации какого-либо одного вещества. Исследование проводят в несколько этапов: смешивают биологический материал с реагентами, инкубируют смесь в течение нескольких часов, разделяют свободное и связанное радиоактивное вещество, осуществляют радиометрию проб, рассчитывают результаты. Метод отличается высокой чувствительностью, его можно использовать в диагностике заболеваний сердечно-сосудистой, эндокринный и других систем, для установления причин бесплодия, нарушения развития плода, в онкологии для определения маркеров опухолей и контроля за эффективностью лечения, для определения концентрации в крови иммуноглобулинов, ферментов и лекарственных веществ. В ряде случаев исследования выполняют на фоне нагрузочных функциональных проб (например, определение содержания инсулина в сыворотке крови на фоне пробы на толерантность к глюкозе) либо в динамике (например, определение в крови половых гормонов на протяжении менструального цикла).

    С помощью коммерческого набора фирмы “ЭББОТТ” — Австрия II-I 125 удается выявлять HBsAg в концентрациях до 0, 1 нг/мл. К преимуществам метода можно отнести возможность стандартизации и автоматизации метода с получением ответов в цифровом выражении. Недостатком метода являются ограничения, определяемые режимом работы с радиоактивным материалом, и относительно короткий срок годности диагностического набора, что связано с распадом радиоактивной метки.

    Диагностические наборы для выявления различных антигенов вирусов гепатитов А, В и D и антител к ним выпускаются фирмой “Изотоп” (Ташкент) и некоторыми зарубежными фирмами (например, фирмой “ЭББОТТ”). В качестве твердой фазы применяются полистироловые шарики (“ЭББОТТ”) или пробирки (“Изотоп”). Для метки антител или антигенов чаще всего используется изотоп I 125, который имеет период полураспада 60 дней и высокую удельную радиоактивность. Измерение радиоактивной метки, т. е. излучения, проводится на специальных счетчиках — радиоспектрометрах. Подсчет радиоактивных импульсов как в контрольных, так и исследуемых образцах проводится в единое фиксированное время, обычно в течение 1 минуты. При анализе результатов реакции необходимо учитывать наличие фона радиоактивности, который может влиять на конечный результат реакции. Причинами повышенного фона могут быть: загрязнение контейнера или гнезда для пробы; неправильная настройка прибора; наличие источника сильного излучения вблизи прибора.

    Для подтверждения положительного результата, полученного при первичном скрининге образцов, рекомендуется повторное исследование РИА или в альтернативном тесте. При обнаружении HBsAg необходимо проводить конфирмационный тест.
    Таблица 1.Классификация вакцин





    Живые

    Убитые

    Синтетические

    Анатоксины

    Содержат













    Получены путем













    Применяются для













    Примеры














    Список литературы:

    Обязательная:

    1. Хаитов P.M., Игнатьева Г.А.,Сидорович И.Г. Иммунология:Учебник.—М.:Медицина,2000.— 432 с : ил.(Учеб. лит. для студ. медвузов).

    2. Ковальчук Л.В и др. Иммунология: практикум: учеб. пособие – М.: ГЭОТАР-Медиа, 2012. – 176 с.

    3. Поздеев О.К. Медицинская микробиология / под ред. акад. РАМН В.И. Покровского - М.: ГЭОТАР-Медиа, 2001. – 768 с.

    4. Борисов Л.Б. Руководство к практическим занятиям по микробиологии. М. 1997 г.


    Дополнительная:

    1. Генкель П.А., Микробиология с основами вирусологии. М.,1974 г.

    2. Коротяев А.И., Бабичев С.А. Медицинская микробиология, иммунология и вирусология: учебник для мед. вузов.- 3-е издание, испр. и доп. – СПб, СпецЛит. 2002. – 591 с.

    3. Борисов Л.Б., Смирнова А.М., Медицинская микробиология, вирусология, иммунология, М., Медицина. 1994 г.

    4. Тимаков В.Д., Левашов В.С., Борисов Л.Б. Микробиология. М. 1983 г.


    1   2   3   4   5   6   7


    написать администратору сайта