Главная страница

Управление энергетическим состоянием залежи нефти 1. Управление энергетическим состоянием залежи нефти 1


Скачать 261.78 Kb.
НазваниеУправление энергетическим состоянием залежи нефти 1
Дата25.08.2020
Размер261.78 Kb.
Формат файлаdocx
Имя файлаУправление энергетическим состоянием залежи нефти 1.docx
ТипДокументы
#136056
страница3 из 4
1   2   3   4
§ 1. ПОНЯТИЕ "ЗАПАСЫ УГЛЕВОДОРОДОВ"

Запасами нефти, газа или конденсата называется их количество, содержащееся в породах-коллекторах в пределах изучаемой части геологического пространства. В соответствии с этим определением можно говорить о запасах отдельного слоя, пласта, зонального интервала, блока, любой части каждого из указанных геологических тел, месторождения, группы месторождений и т.п. Процедуру определения количества УВ называют подсчетом запасов. Объект, в котором подсчитываются запасы, называют подсчетным.

Запасы нефти и газа — важнейший показатель значимости залежи, месторождения, района и т.п.

Чтобы единообразно оценивать и учитывать запасы, государственная комиссия по запасам (ГКЗ) разрабатывает классификации запасов и инструкции по их применению. На классификации запасов основана система государственного учета количества, качества, степени изученности, условий залегания и промышленного освоения запасов, а также сведений о добыче и потерях нефти, газа и конденсата при разработке месторождений.

В настоящее время в стране действует Классификация запасов месторождений, перспективных и прогнозных ресурсов нефти и горючих газов, утвержденная в 1983 г.

Классификация запасов обеспечивает единые принципы подсчета запасов нефти и газа в недрах по категориям, исходя из степени изученности этих запасов и их подготовленности для промышленного освоения. Запасы относят к той или иной категории в соответствии с надежностью их определения, которая зависит от геологических условий и степени изученности подсчетного объекта.

Категории запасов — интегральный показатель степени изученности и подготовленности залежи или ее части к разработке.

При подсчете запасов УВ их относят к категориям А, В, С1 и C2. Условия отнесения запасов к той или иной из указанных категорий определяются Инструкцией по примене-182

нию классификации запасов месторождений, перспективных и прогнозных ресурсов нефти и горючих газов.

Согласно действующей Классификации, запасы месторождений нефти и газа по народнохозяйственному значению разделяются на две группы, подлежащие отдельному учету: балансовые запасы, вовлечение которых в разработку в настоящее время экономически целесообразно, и забалансовые, вовлечение которых в настоящее время экономически нецелесообразно или технически и технологически невозможно, но которые в дальнейшем могут быть переведены в балансовые.

В балансовых запасах нефти, растворенного газа, конденсата и содержащихся в них компонентов подсчитываются и учитываются извлекаемые запасы, т.е. часть балансовых запасов, которую экономически целесообразно извлечь из пласта при рациональном использовании современной техники и технологии добычи нефти и газа.

Различают начальные и текущие запасы нефти, газа и конденсата.

Начальные балансовые (соответственно начальные извлекаемые) запасы УВ — это запасы залежи или месторождения начала разработки. Текущие балансовые (соответственно текущие извлекаемые) запасы — это запасы, составляющие на определенную дату разность между начальными запасами и накопленной добычей.

Подсчетом начальных запасов завершается цикл геологоразведочных работ и начинается этап подготовки залежи углеводородов к вводу в промышленную разработку.

Очевидно, что запасы нефти и газа представляют собой величину, производную от формы и внутренней структуры залежи. Поэтому достоверность оценки запасов не только количественно, но и с точки зрения условий их извлечения в процессе разработки зависит от того, насколько правильно составлена статическая модель залежи. При подсчете запасов должна быть оценена степень сложности условий залегания нефти и газа, выявлены такие особенности строения залежей, которые играют значительную роль при выборе системы разработки и неучет которых может существенно сказаться на технико-экономических показателях разработки, и в первую очередь на величине коэффициента извлечения нефти.

Из сказанного видно, что подсчет запасов — одна из важнейших задач нефтегазопромысловой геологии, при решении которой изучают внутреннюю структуру подсчетного объекта, выделяют его геологические тела и изучают их свойства, положение границ и взаимосвязь. Он служит основой для выделения балансовых, забалансовых и извлекаемых запасов, а также для составления технологической схемы разработки.

Важную роль играет пересчет начальных запасов в процессе разработки, выполняемый, как правило, в условиях, когда по залежи накоплен уже большой объем геологической инфорации и имеется значительный опыт ее эксплуатации. Пересчет производится обычно перед составлением каждого нового проектного документа на дальнейшую разработку. Обобщение геологической информации при пересчете позволяет детализировать статическую модель залежи. Это дает возможность внести в принятую систему разработки необходимые коррективы, способствующие повышению ее эффективности. Кроме того, сравнительный анализ результатов подсчета и пересчета запасов одной и той же залежи служит источником важной информации для усовершенствования методов разведки, подсчета запасов и разработки залежей.

§ 2. ГРАНИЧНЫЕ ЗНАЧЕНИЯ СВОЙСТВ НЕФТЕГАЗОНАСЫЩЕННЫХ ПОРОД

Правильный подсчет запасов нефти и газа предполагает раскрытие внутренней структуры подсчетного объекта. Для выявления внутренней структуры залежи необходимо знать положение границ между коллекторами и не-коллекторами, проводимых по кондиционным значениям емкостно-фильтрационных свойств пород.

Кондиционными называют граничные значения свойств нефтегазонасыщенных пород, разделяющих их на коллекторы и неколлекторы, а также на коллекторы с разными промысловыми характеритиками. Эти граничные значения называют также нижними пределами значений свойств продуктивных коллекторов.

В настоящее время накоплен значительный опыт обоснования предельных значений параметров нефтегазонасыщенных пород, который используется при подсчете запасов, но применяемые методы требуют дальнейшего развития.

Большинство способов позволяет устанавливать кондиционные значения проницаемости пород, отдельные методы предназначены для определения кондиционных значений пористости или нефтенасыщенности. Проведение границ между коллекторами и неколлекторами или между коллекторами 184 разной продуктивности по кондиционным значениям разных свойств дает неодинаковые результаты, так как связи между различными свойствами пласта носят стохастический характер — фиксированному значению одного параметра соответствует несколько значений других параметров. Например, породы с одинаковыми значениями коэффициента проницаемости могут различаться по значениям коэффициентов пористости, нефтегазонасыщенности, коэффициента вытеснения и др. Пропластки с одинаковой проницаемостью или пористостью различаются по значениям удельных коэффициентов продуктивности. Нередки случаи, когда из пород, по граничным значениям проницаемости отнесенных к неколлек-торам, получают промышленные притоки нефти, а из пород, по граничным значениям пористости отнесенных к коллекторам, притоков не получают.

В связи со сказанным, а также вследствие значительной сложности задачи пока нет общепринятой методики установления кондиционных значений свойств нефтегазонасыщенных пород. Большинство исследователей пришло к выводу, что для определения границы между коллекторами и некол-лекторами следует использовать геофизические показатели, отражающие совокупность сложно взаимодействующих свойств пород, или какой-то комплексный параметр, характеризующий емкостно-фильтрационные свойства породы одним числом. Предельные значения параметров коллекторов необходимо обосновать в каждой скважине для каждого пласта или прослоя на основе комплексного использования данных лабораторного анализа керна, геофизических и гидродинамических исследований скважин.

§ 3. КОЭФФИЦИЕНТЫ ИЗВЛЕЧЕНИЯ НЕФТИ, ГАЗА, КОНДЕНСАТА

Исходя из физических условий содержания УВ в пустотном пространстве коллекторов (их физикохимических свойств, определяющих поверхностные взаимодействия флюидов и породы, молекулярных, капиллярных и др.), из технологических и технических возможностей (достигаемой степени полноты охвата объема пласта процессом вытеснения при реализуемой системе разработки) и из экономических ограничений плотности сетки скважин, предельного дебита и обводненности продукции и других параметров, ясно, что на поверхность из продуктивных пластов можно извлечь только какую-то часть содержащихся в них запасов углеводородов.

Количественно доля запасов (нефти, газа, конденсата), которая может быть извлечена (при применении наиболее эффективных в данных геолого-физических условиях технологий и технических средств, при выполнении оптимальных экономических показателей и соблюдении требований о х-раны недр и окружающей среды) определяется: для нефти коэффициентом извлечения нефти (КИН), для газа и конденсата соответственно коэффициентами извлечения газа и конденсата.

Исходя из физических особенностей этих УВ наиболее сложным является определение коэффициента извлечения нефти (КИН). По каждому нефтяному эксплуатационному объекту, вводящемуся в разработку, расчет выполняется специализированной научной организацией и после согласования с заинтересованными сторонами утверждается Государственной комиссией по запасам Российской Федерации (ГКЗ РФ). Коэффициент извлечения газа по отдельным газовым объектам не рассчитывают, а принимают, исходя из имеющегося опыта в целом по газовой отрасли, равным 0,8.

Остановимся подробнее на физической сущности коэффициента извлечения нефти (КИН) и методах его расчета.

В общем виде коэффициент извлечения нефти может быть выражен как отношение количества нефти, извлеченной на поверхность — 0извл, к балансовым запасам нефти залежи 06ал:

КИН = дИзВл/ол.

Коэффициент извлечения за все время разработки залежи называется конечным, за некоторый промежуток времени с начала разработки — текущим.

Имеется несколько способов расчета конечного (проектного) КИН:

статистический, основанный на полученных с помощью многофакторного анализа статистических зависимостей между конечными КИН и определяющими его различными геоло-го-физическими и технологическими факторами;

покоэффициентный, основанный на определении значений ряда влияющих на КИН коэффициентов, учитывающих геолого-физическую характеристику конкретной залежи нефти и особенностей предлагаемой к внедрению системы разработки;

основанный на технологических расчетах показателей нескольких вариантов систем разработки, выполненных путем моделирования процесса фильтрации на трехмерных математических моделях конкретной залежи нефти.

Покоэффициентный метод важен потому, что он наиболее полно раскрывает физическую сущность КИН. По этому методу конечный КИН обычно выражается в виде произведения трех коэффициентов — вытеснения (Квыт), охвата процессом вытеснения (Кохв) и заводнения (Кзав):

КИН = -КвыДоиАзшг

Коэффициент вытеснения — это отношение количества нефти, вытесненного при длительной интенсивной (до полного обводнения получаемой жидкости) промывке объема пустотного пространства коллектора, в который проникла вода, к начальному количеству балансовых запасов нефти в этом объеме. По существу, коэффициент вытеснения показывает предельную величину нефтеизвлечения, которую можно достигнуть с помощью данного рабочей агента. Значения Квыт, как правило, определяют экспериментально в лабораторных условиях на длинных образцах керна с использованием модельных пластовых жидкостей. При удовлетворительной выборке керна, принятого для эксперимента, получают значение Квыт, характеризующееся высокой степенью надежности.

Коэффициент охвата Кохв — это отношение объема пустотного пространства, занятого вытесняющим агентом (охваченного процессом вытеснения), к общему объему пространства коллекторов изучаемого объекта, содержащих нефть. Этот коэффициент характеризует долю пород-коллекторов, охватываемых процессом фильтрации при данной системе разработки. Кохв можно рассчитать по картам распространения коллекторов по площади залежи (всех и заполняемых вытесняющим агентом) на основании эмпирических статистических зависимостей коэффициента охвата от плотности сетки скважин или на основании аналогии с подобными залежами нефти.

Коэффициент заводнения Кзав характеризует потери нефти в объеме, охваченном процессом вытеснения из-за прекращения ее добычи по экономическим соображениям при обводненности продукции скважин менее 100 %. Он зависит от степени неоднородности пласта по проницаемости, соотношения вязкостей нефти и вытесняющего агента, принятой предельной обводненности добываемой продукции. Надежных методов расчета Кзав не создано. Обычно он оценивается либо по эмпирическим формулам, учитывающим влияющие на него параметры, либо принимается экспертно. Расчет КИН, выполненный покоэффициентным или статистическим методами, нередко допускает субъективизм и неопределенность. Это вызвано как множеством факторов, влияющих на КИН, и невозможностью полного их учета, так и отсутствием надежных методов определения степени влияния каждого из них. В частности, очень сильно влияет на конечный КИН соответствие применяемой системы разработки конкретным геолого-физическим условиям.

Наиболее полно учесть все многочисленные факторы, влияющие на конечный КИН, позволяет третий способ — гео-лого-математическое моделирование процессов фильтрации на трехмерных моделях, с помощью быстродействующих современных ЭВМ.

С этой целью на базе детальных адресных геологопромысловых моделей создаются статические геологоматематические трехмерные модели, отражающие изменчивость свойств коллекторов по объему залежи. Эти модели представляют собой совокупность нескольких десятков тысяч элементарных ячеек, каждая из которых несет информацию о фильтрационно-емкостных свойствах продуктивных пластов в объеме залежи. Высокая надежность подобных моделей достигается также адаптацией их к прошедшему фактическому периоду эксплуатации залежи, если таковой уже был.

Затем на базе статических трехмерных геологоматематических моделей, путем моделирования процессов фильтрации в трехмерном пространстве и вытеснения нефти рабочим агентом к забоям добывающих скважин, с помощью ЭВМ создается динамическая модель эксплуатационного объекта, показывающая прогнозное изменение во времени:

насыщенности объема объекта нефтью и вытесняющим агентом;

пластового давления в зоне нагнетания агента и отбора нефти;

дебитов скважин и обводненности добываемой в них продукции.

При желании, на дисплей ЭВМ можно вывести и зафиксировать состояние залежи на любой момент времени. В результате получают расчет проектных технологических показателей разработки по годам эксплуатации и за отдельные периоды — 10, 20, 40 лет, вплоть до конца разработки.

Значение конечного КИН определяют для нескольких вариантов системы разработки; он во многом является показа-188 телем эффективности проектируемой системы, которая зависит от того, насколько полна та или иная система разработки соответствует конкретным геолого-физическим условиям реального объекта разработки.

Соответственно этому проектирование разработки представляет собой оптимизационную задачу выбора системы разработки, обеспечивающей получение наибольшего коэффициента нефтеизвлечения. Как известно, любая оптимизационная задача сводится к выбору оптимального варианта из нескольких возможных. В соответствии с действующим положением коэффициент извлечения нефти и все другие показатели разработки обоновываются не менее чем по трем вариантам разработки, которые различаются способами воздействия на продуктивные пласты, системами размещения и плотностью сеток скважин, очередностью и темпами разбу-ривания объектов.

При оптимизации КИН возможны два различных подхода. В основу оптимизации может быть положено стремление обеспечить максимальное использование запасов недр, т.е. получение наибольшего КИН, при этом другие признаки, в том числе и экономические, учитываются как второстепенные. В этом случае обоснованное значение КИН можно назвать технологическим.

Если доминирует экономический критерий, предусматривающий получение максимальной прибыли, обоснованное значение КИН можно назвать экономическим.

Технологический коэффициент нефтеизвлечения до перехода к рыночной экономике принимался в качестве единственного конечного.

Достижение этого коэффициента требовало максимального использования недр и соответственно применения более дорогих систем разработки, расходования повышенных материальных средств, особенно для месторождений с низкой продуктивностью. В условиях ранее действовавшего планового хозяйства это было оправдано.

В условиях рыночных отношений, когда экономический фактор стал доминирующим и во главу угла ставят вопрос получения максимальной прибыли, возникла необходимость ориентироваться на экономический КИН. Приоритетно экономический подход, учитывающий современную конъюнктуру на рынке нефти и действующее налоговое законодательство, зачастую требует удешевлять систему разработки даже в ущерб полноте использования недр.

Различия в технологических и экономических значениях

КИН наиболее значительны при низкой продуктивности и сложном геологическом строении залежей.

В случае весьма неблагоприятных экономических показателей, при крайне низкой продуктивности залежи или на завершающей стадии разработки, действующее законодательство допускает уменьшение обязательных налогов и платежей или переход на Соглашение о разделе продукции. При этом экономический КИН подлежит увеличению.

В настоящее время технологический КИН рассчитывается и утверждается в обязательном порядке, а экономический КИН рассчитывается и утверждается дополнительно в случае его существенного расхождения с технологическим коэффициентом нефтеизвлечения.

В заключение следует отметить, что в настоящей главе сведения о запасах углеводородов приведены в том весьма сокращенном виде, который необходим для последующего изложения вопросов промысловой геологии нефти и газа.

В полном объеме важная и обширная проблема изучения запасов УВ подробно излагается в курсе "Методы подсчета запасов оценки ресурсов нефти и газа" и в соответствующем учебнике.

etMT 2

Приток жидкости к скважинœе

Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно сложно и не всœегда поддается расчету. Лишь при геометрически правильном размещении скважин (линœейные или кольцевые ряды скважин и правильные сетки), а также при ряде допущений (постоянство толщины, проницаемости и других параметров) удается аналитически рассчитать дебиты этих скважин при заданных давлениях на забоях или, напротив - рассчитать давление при заданных дебитах. При этом вблизи каждой скважины в однородном пласте течение жидкости становится близким к радиальному. Это позволяет широко использовать для расчетов радиальную схему фильтрации.

Жидкость из пласта в скважину поступает под действием перепада давления между пластом и забоем скважины. По этой причине пластовое давление - основной фактор, определяющий текущее энергетическое состояние залежи. Точнее, следует говорить не об абсолютной величинœе этого параметра, а об его соотношении с нормальным пластовым давлением на глубинœе залегания данной залежи, ĸᴏᴛᴏᴩᴏᴇ равно давлению столба воды равной высоты. Различают залежи, у которых начальное пластовое давление превышает эту величину (аномально-высокое пластовое давление - АВПД) и залежи с более низким начальным давлением (аномально низкое пластовое давление - АНПД).

Аномалии начального пластового давления определяются различными причинами, в основном геологического характера. Анализ данных по большому числу нефтяных месторождений тяжелых нефтей показал, что существует корреляционная зависимость между удельным весом (содержанием тяжелых компонентов в нефти) и коэффициентом аномально высокого пластового давления, который равен отношению АВПД в залежи к нормальному пластовому давлению на соответствующей глубинœе. Именно, с ростом удельного веса нефти наблюдается тенденция к увеличению коэффициента аномальности. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, по составу нефти, определяемому по устьевым замерам, можно оценивать АВПД в залежи.

Другая причина проявления аномального пластового давления должна быть обусловлена особенностями гидростатики разноплотных жидкостей. Пусть, к примеру, кровля нефтяного пласта находится на глубинœе 1000 м, водонефтяной контакт - на глубинœе 2000 м, а нижняя граница водной области - на глубинœе 3000 м. Так как давление в пластах распределяется по гидростатическому закону в соответствии с удельным весом воды, то на глубинœе 3000 м пластовое давление равно примерно 30 МПа, на отметке водонефтяного контакта - 20 МПа. В случае если принять удельный вес нефти 800 кг/м3, то на кровле нефтяного пласта давление будет равно 20 - 8 = 12 МПа, в то время как нормальное пластовое давление на этой глубинœе равно 10 МПа, т. е. коэффициент аномальности равен 1,2. При наличии газовой шапки данный эффект будет существенный. Можно решать и обратную задачу - по определœенному распределœению давления по глубинœе оценивать положение водонефтяного контакта.

Различают два типа источников пластовой энергии - естественные и искусственные. К естественным источникам относятся упругость пластовой системы, напор пластовых вод, наличие свободного газа (в виде газовой шапки), энергия растворенного газа, напор обусловленный силой тяжести. Пластовую энергию можно поддерживать искусственным способом - закачкой в пласт воды, пара или газа. Учитывая зависимость оттого, какой источник пластовой энергии преобладает, формируется определœенный режим разработки. Рассмотрим последовательно каждый из этих режимов.

В начальном состоянии пластовая система, под которой принято понимать вмещающий коллектор, нефтяная часть и контактирующий с ней водоносный бассейн, находится в сжатом состоянии, определяемом начальным пластовым давлением. Отбор нефти из залежи приводит к снижению там давления, благодаря чему происходит расширение частиц породы, нефти и воды. А это, в свою очередь, уменьшает падение пластового давления. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в процессе разработки начальная упругая энергия сжатия пластовой системы уменьшается. Метод разработки нефтяного месторождения, основанный на использовании запаса упругой энергии пластовой системы, принято называть разработкой на естественном режиме.


















Когда человек теряет богатство, он ничего не теряет. Когда человек теряет здоровье, он теряет кое-что. Когда человек теряет характер, он теряет все. © Билли Грэм 263 -   | 193 -   или читать все...

Обратная связьПожаловаться на материал

ТОП СТАТЬИ:

  • Эффекторные нервные окончания

Закон спроса, исключения в его действии

КАТЕГОРИИ:

  • Авто

  • Автоматизация

  • Архитектура

  • Астрономия

  • Аудит

  • Биология

  • Бухгалтерия

  • Военное дело

  • Генетика

  • География

  • Геология

  • Государство

  • Дом

  • Журналистика и СМИ

  • Изобретательство

  • Иностранные языки

  • Информатика

  • Искусство

  • История

  • Компьютеры

  • Кулинария

  • Культура

  • Лексикология

  • Литература

  • Логика

  • Маркетинг

  • Математика

  • Машиностроение

  • Медицина

  • Менеджмент

  • Металлы и Сварка

  • Механика

  • Музыка

  • Население

  • Образование

  • Охрана безопасности жизни

  • Охрана Труда

  • Педагогика

  • Политика

  • Право

  • Программирование

  • Производство

  • Промышленность

  • Психология

  • Радио

  • Религия

  • Связь

  • Социология

  • Спорт

  • Стандартизация

  • Строительство

  • Технологии

  • Торговля

  • Туризм

  • Физика

  • Физиология

  • Философия

  • Финансы

  • Химия

  • Хозяйство

  • Черчение

  • Экология

  • Эконометрика

  • Экономика

  • Электроника

  • Юриспруденция

НОВЫЕ СТАТЬИ

  • Понятие и признаки полезной модели - Определение и признаки полезной модели даны в ст. 1351 ГК. Согласно п. 1 указанной статьи в качестве полезной модели охраняется техническое решение...

Проверочный расчет прочности и устойчивости - При оценке прочности переборки контролируются следующие напряжения: напряжения в меридиональных и конических сечениях переборки вдали от опорного...

ПОПУЛЯРНЫЕ СТАТЬИ

  • Система и виды органов исполнительной власти в РФ. Административно-правовое обеспечение ее функционирования.

Взаимные права и обязанности супругов, родителей и детей - вступившие в брачный союз мужчина и женщина обладают как личными неимущественными, так и...

Виды пластовой энергии. Режимы работы пластов
Стр 1 из 2Следующая



Билет 22

Площадное заводнение

Наиболее интенсивная система воздействия на пласт, обеспечивающая самые высокие темпы разработки месторождений. Применяют при разработке пластов с очень низкой проницаемостью.

При этой системе добывающие и нагнетательные скважины размещаются по правильным схемам четырех-, пяти-, семи- и девятиточечным системам.

Так, в четырехточечной системе (рис. 7.5) соотношение между добывающими и нагнетательными скважинами 2:1, при пятиточечной системе -1:1, при семиточечной системе -1:2, при девятиточечной системе - 1:3. Таким образом, наиболее интенсивными среди рассмотренных являются семи- и девятиточечные системы.

Большое влияние на эффективность площадного заводнения оказывает однородность пласта и величина запасов нефти, приходящаяся на одну скважину, а также глубина залегания объекта разработки.    

 

 Рис. 7.4. Принципиальная схема разработки пласта при использовании блоковых систем.

1 - добывающие скважины; 2 - нагнетательные скважины

 



Рис. 7.5. Основные схемы площадногозаводнения.

а - четырехточечная; б - пятиточечная; в-семиточечная; г - девятиточечная;

1 - добывающие скважины; 2 - нагнетательные скважины.

 

В условиях неоднородного пласта как по разрезу, так и по площади происходят преждевременные прорывы воды к добывающим скважинам по более проницаемой части пласта, что сильно снижает добычу нефти за безводный период и повышает водонефтяной фактор, поэтому площадное заводнение желательно применять при разработке более однородных пластов на последних стадиях разработки месторождений.

 

Достоинства и недостатки МУН. Критерии применимости МУН. Выбор МУН и объектов их применения.

Достоинства и недостатки современных МУН.

Положительный результат применения МУН понятен из самого

названия.

Недостатки МУН:

• большая наукоѐмкость и высокая технологичность (прежде,

чем применять тот или иной метод, необходимо провести

немалое число лабораторных исследований, иногда

приходится разрабатывать специальные виды оборудования

для промысловой реализации);

• многие МУН энерго- и материалоѐмкие;

часто стоимость промысловой реализации МУН высока (до

70% затрат парогравитационного метода относится к

промысловому обустройству, которое необходимо обеспечить

до начала реализации метода);

• нередко эффект от применения отложен во времени, т.е.

период окупаемости может быть значителен;

• ряд МУН могут быть экологически опасны и др.

Критерии применимости МУН – это интервалы

значений геолого-физических параметров, при которых

была получена (предполагается стадия ОПР)

технологическая эффективность того или иного

метода.

Характеристики пласта и флюидов Допустимый интервал Оптимальные

значения

Тип коллектора Поровый, трещинно-

Поровый .Поровый

Толщина продуктивного пласта, м не менее 1 3-10

Пористость, % 12-25 17-25

Проницаемость, мкм 2 больше 0,05 больше 0,2

Пластовое давление, МПа до 40,0 -

Температура пласта, о С 20-80 30-50

Общая минерализация пластовых вод, г/л до 300 до 100

Общая минерализация закачиваемых вод,

г/лдо 60

до 30

Содержание сульфатов в пластовой и

закачиваемых водах, мг/л

до 100

до 5

Обводненность, % 40-95 60-80

Вязкость нефти, мПа . с 1-100 3-20

Критерии применимости микробиологического МУН на основе

Выбор Мун

Полнота процесса нефтеизвлечения определяется

параметрами, характеризующими воздействие на пласт и

флюиды в микро- и макромасштабе. В микромасштабе

процесс принято количественно оценивать через Квыт, а в

макромасштабе – Кохв.

Билет 23

Виды пластовой энергии. Режимы работы пластов

Под режимом пласта понимают-характер проявления движущих сил, обеспечивающих продвижение нефти в пластах к забоям эксплуатационных скважин. Знать режимы работы необходимо для проектирования рациональной системы разработки месторождения и эффективного использования пластовой энергии с целью максимального извлечения нефти и газа из недр. Различают следующие режимы:1- водонапорный,2- упругий и упруговодонапорный,3-газонапорный или режим газовой шапки,4-газовый или режим растворенного газа,5- гравитационный,6- смешанный.

 1)Водонапорный режим - режим, при котором нефть движется в пласте к скважинам под напором краевых (или подошвенных) вод. При этом залежь наполняется водой из поверхностных источников в количествах, равных или несколько меньших количества отбираемой жидкости и газа из пласта в процессе его разработки. Показателем эффективности разработки залежи является коэффициентнефтеотдачи - отношение количества извлеченной из залежи нефти к общим (балансовым) запасам ее в пласте. Практикой установлено, что активный водонапорный режим наиболее эффективный. При этом режиме удается извлечь 50-70%, а иногда и больше от общего количества нефти, содержащейся в недрах до начала разработки залежи. Коэффициент нефтеотдачи при водонапорном режиме может быть в пределах 0.5-0.7 и более.

 

2) Упругий (упруговодонапорный) режим - режим работы залежи, при котором пластовая энергия при снижении давления в пласте проявляется в виде упругого расширения пластовой жидкости и породы. Силы упругости жидкости и породы могут проявляться при любом режиме работы залежи. Поэтому упругий режим правильнее рассматривать не как самостоятельный, а как такую фазу водонапорного режима, когда упругость жидкости (нефти, воды) и породы является основным источником энергии залежи. Упругое расширение пластовой жидкости и породы по мере снижения давления должно происходить при любом режиме работы залежи. Однако для активного водонапорного режима и газовых режимов этот процесс играет второстепенную роль.В отличие от водонапорного режима при упруговодонапорном режиме пластовое давление в каждый данный момент эксплуатации зависит и от текущего, и от суммарного отборов жидкости из пласта. По сравнению с водонапорным режимом упруговодонапорный режим работы пласта менее эффективен. Коэффициент нефтеизвлечения (нефтеотдачи) колеблется в пределах 0.5-0.6 и

 

 3.Газонапорный режим (или режим газовой шапки) - режим работы пласта, когда основной энергией, продвигающей нефть, является напор газа газовой шапки. В этом случае нефть вытесняется к скважинам под давлением расширяющегося газа, находящегося в свободном состоянии в повышенной части пласта. Однако, в отличие от водонапорного режима (когда нефть вытесняется водой из пониженных частей залежи) при газонапорном режиме, наоборот, газ вытесняет нефть из повышенных в пониженные части залежи. Эффективность разработки залежи в этом случае зависит от соотношения размеров газовой шапки и характера структуры залежи. Благоприятные условия для наиболее эффективного проявления такого режима - высокая проницаемость коллекторов (особенно вертикальные, напластование), большие углы наклона пластов и небольшая вязкость нефти.По мере извлечения нефти из пласта и снижения пластового давления в нефтенасыщенной зоне газовая шапка расширяется, и газ вытесняет нефть в пониженной части пласта к забоям скважин. При этом газ прорывается к скважинам, расположенным вблизи от газонефтяного контакта. Выход газа и газовой шапки, а также эксплуатация скважин с высоким дебитом недопустима, так как прорывы газа приводят к бесконтрольному расходу газовой энергии при одновременном уменьшении притока нефти. Поэтому необходимо вести постоянный контроль за работой скважин, расположенных вблизи газовой шапки, а в случае резкого увеличения газа, выходящего из скважины вместе с нефтью, ограничить их дебит или даже прекратить эксплуатацию скважин. Коэффициент нефтеотдачи для залежей нефти с газонапорным режимом колеблется в пределах 0,5-0,6. Для его увеличения в повышенную часть залежи (в газовую шапку) нагнетается с поверхности газ, что позволяет поддерживать, а иногда и восстановить газовую энергию в залежи.

Режим растворенного газа - режим работы залежи, при котором нефть продавливается по пласту к забоям скважин под действием энергии пузырьков расширяющегося газа при выделении его из нефти. При этом режиме основной движущей силой является газ, растворенный в нефти или вместе с ней рассеянный в пласте в виде мельчайших пузырьков. По мере отбора жидкости пластовое давление уменьшается, пузырьки газа увеличиваются в объеме и движутся к зонам наименьшего давления, т.е. к забоям скважин, увлекая с собой и нефть. Изменение равновесия в пласте при этом режиме зависит от суммарного отбора нефти и газа из пласта. Показателем эффективности разработки залежи при газовых режимах является газовый фактор, или объем газа, приходящегося на каждую тонну извлеченной из пласта нефти. Коэффициент нефтеизвлечения при этом режиме равен 0,2-0,4.

 Гравитационный режим - режим работы залежи, при котором движение нефти по пласту к забоям скважин происходит за счет силы тяжести самой нефти. Гравитационный режим проявляется тогда, когда давление в пласте упало до минимума, напор контурных вод отсутствует, газовая энергия полностью истощена. Если при этом залежь обладает крутым углом падения, то продуктивными будут те скважины, которые вскрыли пласт в крыльевых, пониженных зонах. Коэффициент нефтеизвлечения при гравитационном режиме обычно колеблется в пределах 0,1-0,2.

Смешанный режим - режим работы залежи, когда при ее эксплуатации заметно одновременное действие двух или нескольких различных источников энергии.

Физические основы применения тепловых методов увеличения нефтеотдачи пластов.
ПредыдущаяСтр 2 из 2



Тепловые МУН – это методы интенсификации притока нефти и повышения продуктивности эксплуатационных скважин, основанные на искусственном увеличении температуры в их стволе и призабойной зоне. Применяются тепловые МУН в основном при добыче высоковязких парафинистых и смолистых нефтей . Прогрев приводит к разжижению нефти, расплавлению парафина и смолистых веществ, осевших в процессе эксплуатации скважин на стенках, подъемных трубах и в призабойной зоне.

Паротепловое воздействие на пласт. Вытеснение нефти паром – метод увеличения нефтеотдачи пластов, наиболее распространенный при вытеснении высоковязких нефтей. В этом процессе пар нагнетают с поверхности в пласты с низкой температурой и высокой вязкостью нефти через специальные паронагнетательные скважины, расположенные внутри контура нефтеносности. Пар, обладающий большой теплоемкостью, вносит в пласт значительное количество тепловой энергии, которая расходуется на нагрев пласта и снижение относительной проницаемости, вязкости и расширение всех насыщающих пласт агентов – нефти, воды, газа. В пласте образуются следующие три зоны, различающиеся по температуре, степени и характеру насыщения:

1) Зона пара вокруг нагнетательной скважины с температурой, изменяющейся от температуры пара до температуры начала конденсации (400–200°С), в которой происходят экстракция из нефти легких фракций (дистилляция нефти) и перенос (вытеснение) их паром по пласту, то есть совместная фильтрация пара и легких фракций нефти.
2) Зона горячего конденсата, в которой температура изменяется от температуры начала конденсации (200°С) до пластовой, а горячий конденсат (вода) в неизотермических условиях вытесняет легкие фракции и нефть.
3) Зона с начальной пластовой температурой, не охваченная тепловым воздействием, в которой происходит вытеснение нефти пластовой водой.

При нагреве пласта происходит дистилляция нефти, снижение вязкости и объемное расширение всех пластовых агентов, изменение фазовых проницаемостей, смачиваемости горной породы и подвижности нефти, воды и др.

Внутрипластовое горение. Метод извлечения нефти с помощью внутрипластового горения основан на способности углеводородов (нефти) в пласте вступать с кислородом воздуха в окислительную реакцию, сопровождающуюся выделением большого количества теплоты. Он отличается от горения на поверхности. Генерирование теплоты непосредственно в пласте – основное преимущество данного метода.

Процесс горения нефти в пласте начинается вблизи забоя нагнетательной скважины, обычно нагревом и нагнетанием воздуха. Теплоту, которую необходимо подводить в пласт для начала горения, получают при помощи забойного электронагревателя, газовой горелки или окислительных реакций.

После создания очага горения у забоя скважин непрерывное нагнетание воздуха в пласт и отвод от очага (фронта) продуктов горения (N2 , CO2 , и др.) обеспечивают поддержание процесса внутрипластового горения и перемещение по пласту фронта вытеснения нефти.

В качестве топлива для горения расходуется часть нефти, оставшаяся в пласте после вытеснения ее газами горения, водяным паром, водой и испарившимися фракциями нефти впереди фронта горения. В результате сгорают наиболее тяжелые фракции нефти.

В случае обычного (сухого) внутрипластового горения, осуществленного нагнетанием в пласт только воздуха, вследствие его низкой теплоемкости по сравнению с породой пласта происходит отставание фронта нагревания породы от перемещающегося фронта горения. В результате этого основная доля генерируемой в пласте теплоты (до 80% и более) остается позади фронта горения, практически не используется и в значительной мере рассеивается в окружающие породы. Эта теплота оказывает некоторое положительное влияние на процесс последующего вытеснения нефти водой из неохваченных горением смежных частей пласта. Очевидно, однако, что использование основной массы теплоты в области впереди фронта горения, то есть приближение генерируемой в пласте теплоты к фронту вытеснения нефти, существенно повышает эффективность процесса.

Перемещение теплоты из области перед фронтом горения в область за фронтом горения возможно за счет улучшения теплопереноса в пласте добавлением к нагнетаемому воздуху агента с более высокой теплоемкостью – например, воды. В последние годы в мировой практике все большее применение получает метод влажного горения.

Процесс влажного внутрипластового горения заключается в том, что в пласт вместе с воздухом закачивается в определенных количествах вода, которая, соприкасаясь с нагретой движущимся фронтом горения породой, испаряется. Увлекаемый потоком газа пар переносит теплоту в область впереди фронта горения, где вследствие этого развиваются обширные зоны прогрева, выраженные в основном зонами насыщенного пара и сконденсированной горячей воды.

Пароциклические обработки скважин. Циклическое нагнетание пара в пласты, или пароциклические обработки добывающих скважин, осуществляют периодическим прямым нагнетанием пара в нефтяной пласт через добывающие скважины, некоторой выдержкой их в закрытом состоянии и последующей эксплуатацией тех же скважин для отбора из пласта нефти с пониженной вязкостью и сконденсированного пара. Цель этой технологии заключается в том, чтобы прогреть пласт и нефть в призабойных зонах добывающих скважин, снизить вязкость нефти, повысить давление, облегчить условия фильтрации и увеличить приток нефти к скважинам.

Механизм процессов, происходящих в пласте, довольно сложный и сопровождается теми же явлениями, что и вытеснение нефти паром, но дополнительно происходит противоточная капиллярная фильтрация, перераспределение в микронеоднородной среде нефти и воды (конденсата) во время выдержки без отбора жидкости из скважин. При нагнетании пара в пласт он, естественно, внедряется в наиболее проницаемые слои и крупные поры пласта. Во время выдержки в прогретой зоне пласта происходит активное перераспределение насыщенности за счет капиллярных сил: горячий конденсат вытесняет, замещает маловязкую нефть из мелких пор и слабопроницаемых линз (слоев) в крупные поры и высокопроницаемые слои, то есть меняется с ней местами.

Именно такое перераспределение насыщенности пласта нефтью и конденсатом и является физической основой процесса извлечения нефти при помощи пароциклического воздействия на пласты. Без капиллярного обмена нефтью и конденсатом эффект от пароциклического воздействия был бы минимальным и исчерпывался бы за первый цикл.

Моделирование методов управления продуктивностью (приемистостью) скважин

1. Кислотные обработки

  •  Обработка ПЗС в залежах с карбонатными коллекторами (Солянокислотная (СКО)).

  •  Обработка ПЗС в залежах с теригенными коллекторами (Глинокислотная).

  •  Растворение глинистых или цементных частиц, попавших в ПЗС в процессе бурения и цементирования скважины.

  •  Растворение выпавших в ПЗС солей.

2. Физические основы солянокислотной обработки.

2.1. Простые СКО

Известняк

CaCO3 + 2HCl = CaCl2 + H20 + CO2 

Доломит

CaMg(CO3)2 + 4HCl = CaCl2 + Mg Cl2+ 2H20 + 2CO2

Проектирование солянокислотной обработки сводится к выбору концентрации кислотного раствора, устанавливаемой экспериментально, а также к расчету необходимого количества товарной кислоты и хими­ческих реагентов. В зависимости от пластовых условий на практике применяют 8—15%-ную соляную кислоту.

В качестве химических реагентов при солянокислотной обработке используют стабилизаторы (уксусная кислота)  для замедления реакции, ингибиторы корро­зии и интенсификаторы для облегчения процесса  удаляются из пласта продуктов взаимодействия кислоты с породой (поверхностно-активные вещества (ПАВ). Как правило, в технической соляной кислоте содержится до 0,4% серной кислоты, которую нейтрализуют добавкой хлористого бария.

2.2 Кислотные ванны

Для очистки продуктивного карбонатного пласта от глинистой и цементной корки, продуктов коррозии и т.д. можно применять в сква­жинах с открытым забоем кислотные ванны.

При проектировании кислотной ванны концентрация кислотного раствора принимается хр= 15 - 20%.

2.3. Термокислотная обработка (длярастворения твердых осадков (АСПО) и повышения эффективности кислотной обработки)

Об­работка ведется в два этапа:

  •  термическая обработка, при которой температура на забое повышается до температуры выше температуры плавления осадков;

  •  обычная солянокислотная обработка раствором повышенной температуры.

Термокислотная обработка базируется на экзотермической реак­ции раствора соляной кислоты с магнием.

2.4. Кислотные обработки под давлением – для выравнивания профиля притока в неоднородном пласте.

Технология СКО под давлением отличается от обычной обработки следующим:

  •  на первом этапе в скважину до кровли продуктивного горизонта спускается колонна НКТ, на конце которой размещен пакер с якорем во избежание повреждения обсадной колонны выше продуктивного горизонта высоким давлением закачки кислотного раствора.

  •  проводится закупорка высокопроницаемых разностей закачкой в них высоковязкой нефтекислотной эмульсии. Нефтекислотная эмульсия готовится на скважине из смеси 12%-го раствора НСl - 70% и дегазированной нефти - 30%.

3. ГЛИНОКИСЛОТНАЯ ОБРАБОТКА

(ОБРАБОТКА ТЕРРИГЕННЫХ КОЛЛЕКТОРОВ)

Глиняной кислотой называется смесь 3-5%-й фтористо-водородной (HF) и 8-10%-й соляной кислот. Терригенные коллекторы содержат, как правило, малое количество карбонатов, изменяющееся, в среднем, от 1 до 5% по массе. Основная масса таких коллекторов представлена силикатными веществами (кварц) и алюмосиликатами (каолин).

При контакте глиняной кислоты с терригенными породами небольшое количество карбонатного материала, реагируя с солянокислотной частью раствора, растворяется, а фтористо-водородная кислота, медленно реагирующая с кварцем и алюмосиликатами, достаточно глубоко проникает в ПЗС, повышая эффективность обработки.

Более подробно физические основы кислотных обработок можно прочитать в учебнике И.Т.Мищенко “Скважинная добыча нефти”.  

1   2   3   4


написать администратору сайта