Главная страница

био расписанные билеты мои. Уровни организации жизни. Проявление главных свойств жизни на разных уровнях ее организации


Скачать 0.93 Mb.
НазваниеУровни организации жизни. Проявление главных свойств жизни на разных уровнях ее организации
Дата23.06.2021
Размер0.93 Mb.
Формат файлаdocx
Имя файлабио расписанные билеты мои.docx
ТипДокументы
#220687
страница6 из 6
1   2   3   4   5   6

билет 50

1. Генетическая инженерия как новый этап развития биотехнологии. Синтез гена. Способы внедрения в клетки искусственно синтезированных генов. Современные биотехнологические процессы основаны на использовании клеток, никогда не существовавших в живой природе. Генная (генетическая) инженерия - совокупность приемов, методов и технологий выделения генов из организмов (клеток), осуществления манипуляций с генами и введения их в другие организмы. Получение генов. Для химического синтеза необходимо иметь полностью расшифрованную последовательность нуклеотидов. Последовательность нуклеотидов в ДНК определяют по и-РНК. В 1976г. был синтезирован ген, состоящий не только из структурного участка, но и регуляторных частей. Этот искусственный ген был введен в бактерию и функционировал в ней как природный. Химическим путем можно синтезировать небольшие по размеру гены прокариот. Синтез генов эукариот, состоящих из 1000 и более нуклеотидов путем химического синтеза создавать не удается. Кроме этого это метод очень трудоемкий и практически не применяется на практике. Наиболее успешным оказался ферментативный синтез. Это метод поколебал центральную догму молекулярной генетики, утверждающую, что считка информации происходит в направлении ДНК→и-РНК→белок. Оказалось, что РНК может быть предшественником ДНК. Подобное наблюдается у онкогенных РНК содержащих вирусов. С РНК вируса, попавшего в клетку, синтезируется ДНК-копия РНК с помощью фермента – обратная транскриптаза. Сам процесс называется обратная транскрипция. Но гены, синтезированные с помощью ревертаз (обратная транскриптаза) не имеют регуляторной части, а это препятствует функционированию искусственных генов в животных клетках, что ограничивает их использование. Кроме того, и-РНК в клетках очень немного, и она не стойкая. В настоящее время рекомбинантные молекулы ДНК чаще всего получают путем гибридизации инвитро фрагментов ДНК вирусного и бактериального происхождения, и в меньшей степени эукариотического происхождения. Трансдукция — перенос фрагментов ДНК с помощью вируса из одной клетки в другую Трансформация — изменение наследственных свойств клетки, вызванное поглощенной ДНК. Системы доставки экзогенных ДНК: «бомбардировка» частицами на поверхности которых находятся гены электропорация - создание пор в клетке под действием удара, через которые ДНК попадают в клетку. липосом-опосредованный транспорт рецептор-опосредованный транспорт (доставка генов к определенным клеткам) использование векторных молекул Вектор — молекула ДНК, способная к включению чужеродной ДНК и к автономной репликации, служащая инструментом для введения генетической информации в клетку. Основные типы векторов: аденовирусные (для внедрения в покоящиеся клетки) герпесные (в клетки нервной системы) ретровирусные ( в быстро размножающиеся клетки) Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы. Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология. Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Получила распространение техника, позволяющая использовать для синтеза ДНК, в том числе мутантной, полимеразную цепную реакцию. Термостабильный фермент, ДНК-полимераза, используется в ней для матричного синтеза ДНК, в качестве затравки которого применяют искусственно синтезированные кусочки нуклеиновой кислоты — олигонуклеотиды. Фермент обратная транскриптаза позволяет с использованием таких затравок (праймеров) синтезировать ДНК на матрице выделенной из клеток РНК. Синтезированная таким способом ДНК называется комплементарной (РНК) или кДНК. Изолированный, «химически чистый» ген может быть также получен из фаговой библиотеки. Так называется препарат бактериофага, в геном которого встроены случайные фрагменты из генома или кДНК, воспроизводимые фагом вместе со всей своей ДНК. Чтобы встроить ген в вектор, используют ферменты — рестриктазы и лигазы, также являющиеся полезным инструментом генной инженерии. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор. Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки. Значительные трудности были связаны с введением готового гена в наследственный аппарат клеток растений и животных. Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать «свой» белок. Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку. Такой процесс получил название трансфекция. Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детеныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

1. Гаметогенез, его разновидности и механизмы. Гаметогенез – процесс образования яйцеклеток (овогенез) и сперматозоидов (сперматогенез). Подразделяют гаметогенез на ряд стадий: Сперматогенез – Стадия размножения Роста Созревания Формирования Овогенез – Стадия размножения Роста Созревания Стадия размножения На данной стадии диплоидные клетки, из которых образуются гаметы, называются овогонии и сперматогонии. Они осуществляют серию митотических делений, в результате чего их численность возрастает. Сперматогонии размножаются на протяжении всего периода половой зрелости мужской особи. Овогонии же размножаются главным образом в период эмбриогенеза. В женском организме этот процесс наиболее интенсивно протекает в яичниках между 3-м и 7-м месяцем внутриутробного развития и завершается на 3-м году жизни. Стадия роста В эту стадию происходит увеличение клеточных размеров и превращение мужских и женских половых клеток в сперматоциты и овоциты I порядка, причем последние достигают больших размеров, чем первые. Одна часть накапливаемых веществ представляет собой питательный материал (желток в овоцитах), другая – связана с последующими делениями. Важным событием этого периода является редупликация ДНК при сохранении неизменного числа хромосом. Стадия созревания Во время данной стадии происходят два последовательных деления: редукционное и эквационное – которые вместе составляют мейоз. После первого деления образуются сперматоциты и овоциты II порядка, а после второго сперматиды и зрелая яйцеклетка. Стадия формирования Процесс сперматогенеза завершается стадией формирования, или спермиогенеза. Ядра сперматид уплотняются вследствие сверхспирализации хромасом. Пластинчатый комплекс перемещается к одному из полюсов ядра, образуя акросомальный аппарат. Центриоли занимают место у противоположного полюса ядра, от одной из них отрастает жгутик, у основания которого в виде спирального чехлика концентрируются митохондрии

. Биологический прогресс и биологический регресс. Биологический прогресс означает победу вида или другой систематической группы в борьбе за существование. Признаками биологического прогресса являются увеличение численности особей данной систематической группы, расширение ее ареала и распадение на подчиненные систематические группы. Все три признака биологического прогресса связаны друг с другом. Увеличение численности особей заставляет вид (или любую другую систематическую группу) расширять границы ареала, заселять новые места обитания, что приводит к образованию новых популяций, подвидов, видов. Биологическому прогрессу противостоит биологический регресс. Он характеризуется обратными признаками: снижением численности особей, сужением ареала, постепенным или быстрым уменьшением популяционного и видового многообразия группы. Биологический регресс может привести вид к вымиранию. Общая причина биологического регресса - отставание в темпах эволюции группы от скорости изменений внешней среды. Быстрое изменение окружающей среды, вызванное деятельностью человека, ведет к увеличению числа видов переходящих в состояние биологического регресса и обреченных на вымирание (если не сохранится приемлемая для них среда).
1   2   3   4   5   6


написать администратору сайта