В цифровую обработку
Скачать 0.7 Mb.
|
Уместно напомнить, что схему цепи по дробной передаточной функции от Z удобно строить в 2 этапа: вначале строится не рекурсивная часть, соответствующая числителю Н(Z), затем каскадно с ней - рекурсивная часть, соответствующая дроби, в числителе которой - единица. График реализованной АЧХ приведен на рис. 3.14, б. Нелинейная зависимость частотного преобразования (3.16) определяет как недостатки, так и достоинства метода билинейного преобразования. Недостаток в том, что наклонные участки частотной характеристики изменяют свой наклон тем больше, чем выше частота. Поэтому, например, линейная фаза после преобразования (3.16) становится нелинейной. Достоинство определяется отсутствием ошибок наложения при переходе АФ ® ЦФ, что позволяет получить высокие уровни ослабления в ПН при конструировании частотно-селективных фильтров. 4. Эффекты конечной разрядности и их учет. 4.1. Шум квантования и шумовая модель. Отсчеты сигнала на входе цифровой системы квантуются к ближайшему из разрешенных уровней. Расстояния между смежными уровнями равно шагу квантования D. Шаг квантования и разрядность кодовых слов связаны соотношением D = 2-b (4.1) где b - разрядность кодовых слов. Значение младшего разряда кодовых слов численно равно шагу квантования. Разность истинного и квантованного числа называется ошибкой квантования. Ошибка квантования е(n) определяется неравенствами: - при округлении чисел, - при усечении чисел. (4.2) На выходе цифровой системы ошибки квантования воспринимаются в виде шума, который называется шумом квантования. Цифровые умножители наравне с АЦП являются источниками шума квантования; на выходе умножителей длину кодовых слов приходится ограничивать, т.к. разрядность результата перемножения кодовых слов возрастает и равна сумме разрядностей множимого и множителя. Расчет уровня шума квантования осуществляется по шумовой модели, которая отличается от исходной цепи наличием источников шума квантования на выходе АЦП и каждого из умножителей. На Рис. 4.1, а приведена в качестве примера шумовая модель цифровой цепи, схема которой показана на Рис. 4.1, б. Обозначения для источников шума: e0(n) - источник шума от АЦП ei(n) - источник шума от каждого из Z множителей. 4.2. Расчет шумов квантования Уровень шума квантования можно оценить, например, по величине максимума шума, т.е. оценка шума по условию наихудшего случая, или по величине усредненной энергии шума, т.е. вероятностная оценка шума. 4.2.1. Расчет максимума шума Шум квантования на выходе цепи от i-го источника шума определяется по формуле свертки где ei(n) - шум на выходе i-го источника шума, hi (n) - импульсная характеристика участка цепи от i-го источника шума до выхода цепи. Максимум шума Еi получается в этом выражении при условии выполнения равенств в формулах (4.2) и совпадении знаков ei (k) и hi (n-k). В результате - при округлении чисел, - при усечении чисел. Максимум шума на выходе цепи Е от всех источников шума определяется суммой максимумов, т.е. наихудший случай, от всех источников шума (4.3) где D0/2 - максимум шума на выходе АЦП при округлении чисел, D/2 - максимум шума на выходе каждого из Z умножителей при округлении чисел или условии одинаковой разрядности всех умножителей. Оценка шума по максимуму приводит к значительному превышению расчетного уровня шума по отношению к реальному. Поэтому чаще применяется вероятностная оценка шума. 4.2.2. Расчет усредненной энергии шума. Шум квантования имеет характер случайной последовательности типа "белый шум". Поэтому дисперсия шума на выходе цепи согласно (2.24), (2.25) определяется формулой |