В книге содержатся сведения по анатомии, физиологии, конституции и экстерьеру собак служебных пород, их разведению, выращиванию и дрессировке.
Скачать 7.52 Mb.
|
Наследственность — это свойство живых существ сохранять свои признаки и особенности и передавать их потомству. Тем самым обеспечивается сходство потомков с родителями и предыдущими поколениями, сохраняются в поколениях особенности вида, породы, родственной группы особей. Передача свойств родителей потомкам обеспечивается процессом размножения. У одноклеточных организмов и телесных (соматических) клеток это достигается простым делением клеток. У двуполых организмов передача наследственности родителей потомкам происходит в процессе оплодотворения, т. е. слияния мужских и женских гамет с образованием зиготы и ее дальнейшего развития в полноценный организм, имеющий сходство с родителями. Изменчивость — это свойство, противоположное наследственности. Оно проявляется в несходстве потомков с предыдущими поколениями, в несходстве особей одного и того же поколения и даже среди родственных организмов. Изменчивость подразделяется на наследственную, когда появление новых свойств передается потомству, и ненаследственную, возникающую в одном поколении, но не сохраняющуюся в последующих. Причины той и другой изменчивости разные. Наследственная изменчивость вызывается воздействиями сильнодействующих внешних факторов (химические, облучение и др.) на ядерные структуры клеток (телесных и половых), которые являются носителями наследственности. К таким структурам относятся нуклеиновые кислоты (дезоксирибонуклеиновая кислота — ДНК) и хромосомы ядра, в состав которых входит ДНК. Участок молекулы ДНК, определяющий тот или иной признак, называется геном. Ген — это единица наследственности. Факторы, вызывающие наследственную изменчивость, называются мутагенными, а изменения, происходящие в молекуле ДНК и хромосомах, при которых происходит появление новых свойств и признаков,— называются мутациями. Мутации могут быть генными (точковыми) и хромосомными. Мутационная изменчивость увеличивает наследственные свойства организмов. Некоторые из них могут быть благоприятны для организма, но многие вызывают разные аномалии. Другой тип наследственной изменчивости распространен у высших организмов, размножающихся половым путем. В результате оплодотворения происходит комбинация в зиготе наследственных особенностей и формируется новая наследственность потомков. Такой тип изменчивости называется комбинативным. В практике селекционной работы человек широко использует как мутационную, так и комбинативную изменчивость. Третий тип изменчивости вызывается такими факторами среды, которые не затрагивают и не изменяют наследственное вещество, но приводят к возникновению ненаследственных изменений ряда признаков. Такими факторами для животных являются условия кормления, содержания, климат и т. п. Ненаследственная изменчивость называется модификационной. Факторы среды могут или способствовать реализации наследственности организма, или, если они не отвечают требованиям наследственности, происходит их утрата или ослабление в формировании и проявлении признака, имеющего наследственную обусловленность. У животных, разводимых человеком, при неблагоприятных условиях может произойти вырождение породы, особенно культурной, как более требовательной. Сочетание наследственной и ненаследственной изменчивостей, в основе которых лежат генотипические особенности организма и реакция организма на воздействие внешних факторов, вызывает фенотипическую изменчивость, проявляющуюся в виде конкретного состояния свойств и признаков организма. МАТЕРИАЛЬНЫЕ ОСНОВЫ НАСЛЕДСТВЕННОСТИ Современное представление о наследственности и наследственной изменчивости основано на работах, проведенных в последние 30 лет. Установлено, что эти свойства живого заложены в особенностях нуклеиновых кислот, особенно в строении дезоксирибонуклеиновой кислоты (ДНК), которая сосредоточена в ядрах половых и соматических (телесных) клеток и входит в состав хромосом ядра. Молекула ДНК образуется двумя спирально закрученными нитями, в состав которых входят азотистые вещества (аденин А, гуанин Г, тимин Т, цитозин Ц), и присоединенными к ним фосфатными и углеводными частями. При этом азотистые основания одной цепи всегда соединены водородными связями в определенном сочетании (комплементарно) с таковыми другой цепи. Например, А1 с Т2, Г1 с Ц2, Т1 с А2, Ц1 с Г2 . При этом сочетание азотистых оснований между двумя цепями молекулы ДНК будет таковым: А-Т и Г-Ц. Молекулы ДНК разных видов организмов отличаются числом и определенной последовательностью пар оснований четырех типов: Г, А, Ц, Т. Наследственная информация обусловлена этими типами оснований и их различной последовательностью в нитях ДНК. Роль ДНК в жизнедеятельности организмов заключается в обеспечении наследственно обусловленного типа синтеза различных специфических белков и ферментов, составляющих основу жизни. Каждый белок отличается от другого числом и чередованием аминокислот, образующих его молекулу. В ДНК закодирована последовательность в размещении аминокислот при синтезе белковой молекулы в цитоплазме клетки. Количество ДНК строго постоянно во всех клетках организма. ДНК обладает следующими особенностями, обеспечивающими свойства наследственности: достаточной стабильностью в сохранении своей молекулярной структуры; способностью к самовоспроизведению, т. е. к самосинтезу одной из нитей комплементарной второй нити; передачей своей генетической информации из ядра в цитоплазму, где происходит синтез белка соответствующей структуры. С нитей ДНК информация «переписывается» на информационную рибонуклеиновую кислоту (РНК), а транспортная РНК захватывает нужные для синтеза белка аминокислоты в цитоплазме и доставляет их к рибосомам клетки, в которых происходит этот синтез, и готовые молекулы белка из рибосом выходят в цитоплазму. ДНК, несущая набор генов, входит в структуру хромосом, которые являются материальными морфологическими носителями вещества наследственности. Каждая хромосома состоит из двух тонких нитей — хромомер. Число и форма хромосом постоянны для каждого вида. В соматических клетках хромосомы образуют пары гомологических, то есть одинаковых по размерам и форме, хромосом. Одна из пары получена в процессе оплодотворения от отца и несет его наследственные особенности, а другая — гомологичная — хромосома получена от матери и вносит материнскую наследственность. Следовательно, через набор таких хромосом потомки получают наследственность обоих родителей. Набор парных хромосом называется диплоидным и составляет кариотип. У разных видов животных он колеблется от двух до ста пар. В половых клетках кариотип состоит из одинарного числа хромосом, то есть в два раза меньше, чем в соматических, и называется гаплоидным геномом. Кариотип соматических клеток обозначается символом 2n, а в гаметах — символом п. У собак кариотип содержит 2n=78 хромосом, то есть 39 пар, а в половой клетке геном содержит n—39 хромосом. В состав кариотипа раздельнополых организмов входят так называемые аутосомные хромосомы, определяющие наследственность большинства признаков и свойств особи. Кроме них, в кариотипе имеется пара половых хромосом, с которыми связано определение половых различий. Половые хромосомы в противоположность сходству членов аутосомной пары различаются между собой по размерам и форме. Одна из половых хромосом, по размеру большая, обозначается буквой X, а меньшая половая хромосома обозначается буквой У. У млекопитающих женские особи имеют в кариотипе пару одинаковых X-хромосом, а в мужской кариотип входят X и Y-хромосомы. B гаметах самца часть сперматозоидов несет X-хромосому, а другие сперматозоиды Y-хромосому, При оплодотворении яйцеклеток, в каждой из которых кроме аутосом присутствует только одна Х-хромосома, происходит образование зиготы. Часть зигот будет иметь в наборе XX-хромосом (X-(сука)X-(кобель)) и из них формируются организмы самок, а часть зигот получит набор XY-хромосом (X-(кобель)Y), что приведет к формированию мужских особей. Такая передача X и Y-хромосом при оплодотворении обеспечивает соотношение полов в потомстве, близкое к тому, что 50 процентов потомков будут самками, 50 процентов — самцами. Изменение в соотношении полов в сторону большего формирования самок и меньшего — самцов (или наоборот) может быть получено специальными воздействиями на исходные родительские организмы. Но проблема направленного изменения в соотношении полов остается актуальной и нерешенной до последнего времени. Индивидуальность каждой хромосомы в кариотипе (аутосом и половых X и Y) обусловлена не только их формой и размером, но и набором генов. Участок ДНК, в котором расположен ген, обусловливающий какой-то признак, называется локусом, например локус пигментации шерсти, локус группы крови. Гены одного локуса обозначают прописными или строчными латинскими буквами. Так, у собаки ген черной окраски обозначают буквой В, ген короткошерстности b, ген крипторхизма — с. Гены различных признаков расположены в хромосоме линейно. Поэтому иногда наблюдается совместное наследование признаков, гены которых расположены в данной хромосоме. Такое наследование называется «сцепленным». У собак установлено сцепленное наследование признаков, гены которых присутствуют в Х-хромосоме, а именно — крипторхизм (ген с) передается с болезнью крови — гемофилией (ген h). У кошек найдено сцепленное наследование голубой радужной оболочки глаз с альбиносным типом шерсти и глухотой. Для некоторых видов (мушка дрозофила, курица) составлены карты хромосом, которые указывают, в каком участке той или иной хромосомы расположен локус, несущий ген данного признака. По своему основному действию гены могут быть доминантными (обозначаются прописными буквами А,B, С, D) или рецессивными (обозначаются строчными буквами а, b, с, d). Каждый ген из пары гомологических хромосом данного локуса называется аллелем, один аллель получен от отца, а другой от матери; Обозначение обоих аллелей какого-либо локуса получает символ двух букв и это соответствует генотипу данного локуса. Например, генотип собаки по локусу черной пигментации шерсти будет записан в виде двух букв ВВ, если аллели отца и матери по этому локусу доминантны. Генотип для двух признаков будет записан четырьмя буквами. Например, если собака имеет крипторхизм (ген с) и черную окраску шерсти (ген В), то генотип по этим признакам записывается ссВВ. Сочетание аллелей в локусе и образованный ими генотип могут быть таких типов: гомозиготный доминантный (ВВ), гомозиготный рецессивный (вв), гетерозиготный (неоднородный) Вb). Следовательно, генотип — это совокупность наследственных задатков генов. Он может быть гомозиготным или гетерозиготным, а фенотип — это комплекс реализованных наследственных задатков в определенных внешних условиях. Некоторые условия могут создавать возможность реализации генотипа, а другие тормозят действия наследственности. Гены некоторых локусов могут иметь не два аллельных состояния, а несколько. Это вызывается многократным мутированием исходного доминантного гена. В результате образуется множественный аллелизм и создается серия рецессивных аллелей, что увеличивает наследственную изменчивость того или иного признака. Серии множественных аллелей часто наблюдаются в отношении гена, обусловливающего синтез пигмента шерсти у собак. Каждый новый аллель такой серии вызывает синтез нового пигмента, в результате чего возникает новая окраска шерсти. По данным Робертсона (1982), серия множественных аллелей такого типа была использована в селекции собак и привела к большому разнообразию мастей у собак разных пород. Известна следующая серия окрасок: сплошная черная (ген А"), доминантная желтая (ген А"), зонарная пигментация (ген агути А), чепрачная (ген asa), кофейная сплошная (ген а) Взаимоотношение между аллелями этой серии таково, что от доминантного исходного гена А остальные аллели серии сопровождаются ослаблением интенсивности признака окраски и составляют такой ряд As>Ay>A>asa>a'. Под влиянием мутагенных факторов (радиации, химических веществ) происходит изменение структуры гена, а именно его азотистых оснований молекулы ДНК — это точковые (или генные) мутации. Воздействие такого фактора может вызывать перестройку каких-то участков хромосом или обмен участками разных хромосом друг с другом и даже может увеличиваться их число а кариотипе (полиплоидия). Такие изменения называются хромосомными мутациями. В результате мутационных изменений в строении гена (ДНК) или хромосом происходит изменение и появление новых свойств признаков. Мутации, происходящие в соматических клетках, могут вызывать онкологические перестройки в таких клетках и в тканях, образующихся этими клетками. Если мутационный процесс происходит в гаметах родителей, то это приводит к появлению у их потомства новых признаков и свойств, часто имеющих патологические свойства с проявлением аномалий, нарушением обмена веществ. Мутационная изменчивость служит важным источником создания новых признаков, которые могут закрепляться в ряде поколений естественным или искусственным отбором. У собак, например, некоторые мутационные признаки закреплены человеком путем селекции и сделались породными признаками (мопсовидность, коротконогость и т. п.). ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ ПРИ ПОЛОВОМ РАЗМНОЖЕНИИ Закономерности наследования признаков родителей их потомством выявлены путем проведения скрещивания родительских пар. Начало этих работ заложено Г. Менделем (1862) при скрещивании гороха. Закономерности наследования различаются внутриаллельным (в пределах локуса) и межаллельным взаимодействиями генов. Если скрещивать самца и самку, различающихся по какому-то одному признаку, то можно установить, какой из признаков имеет доминантный тип, то есть проявляется у потомка, а какой остается в скрытом состоянии, так как обусловлен рецессивным аллелем. При этом в первом поколении все потомки имеют фенотип с доминантным признаком, а их генотип гетерозиготный по обоим аллелям. В этом проявляется первый закон Менделя: единообразие потомства первого поколения (F-1) по доминантному признаку. При скрещивании животных этого поколения между собой во втором поколении (F 2) появляются животные двух фенотипов: 75 процентов животных с доминантным состоянием признака и 25 процентов с рецессивным, т. е. в соотношении 3:1. Это второй закон Менделя — закон «расщепления» признаков у потомства F-2 на доминантные и рецессивные фенотипы. Например, при скрещивании короткошерстной собаки (доминантный ген L, генотип LL) с длинношерстной собакой (рецессивный ген I, генотип II) их потомство (F-1,) будет иметь гетерозиготный генотип LI, а по фенотипу — короткошерстность. Если будем скрещивать гетерозиготных собак между собой ((сука)LI х (кобель)LI), то у их потомства, т. е. во втором поколении (F-2), 75 процентов собак будет короткошерстными, а 25 процентов — длинношерстными. По генотипу расщепление выразится: 25 процентов LL, 50 процентов LI, 25 процентов II, что дает соотношение 1:2:1. Если при скрещивании учитывается не один признак (моногибридное скрещивание), а два, обусловленных генами двух локусов (дигибридное скрещивание), то наследование будет сопровождаться увеличением разнообразия фенотипов и генотипов во втором поколении в результате комбинирования у потомства исходных родительских признаков. Примером этого может служить скрещивание коричневого (bb), короткошерстного (LL) добермана (генотип LLbb) и длинношерстного (II) с черной окраской (ВВ) ньюфаундленда (генотип IIВВ). Случается и такое взаимодействие аллелей одного и того же локуса, когда в признаке проявляется одновременно действие обоих аллельных генов локуса. Этот тип наследования назван кодоминированием генов. Он часто проявляется в генотипах, обусловливающих синтез разных белков. Так, например, в организме в результате кодоминантного действия аллельных генов А и В локуса гемоглобина в эритроцитах образуется три типа гемоглобина с генотипами АА, ВВ и АВ. Это нормальные гемоглобины, но несколько различаются биохимически, что полезно для жизни животного. Взаимодействие аллелей генов разных локусов приводит к появлению нового признака у потомства, которого не было у родителей. Этот тип наследования называется «новообразованием при скрещивании». Например, при скрещивании коричневого добермана с голубым потомство будет иметь черную окраску шерсти. При комплементарном типе взаимодействия генов, расположенных в разных участках хромосом, взаимодействуют два доминантных гена разных локусов, причем каждый из них не дает фенотипического проявления признака, а совместное комплементарное их действие приводит к формированию нового признака. Например, комплементарное взаимодействие генов у собак выявлено в виде паралича задних конечностей у помесного потомства, полученного от скрещивания здоровых родителей датского дога с сенбернаром. Заболевание проявляется в разной степени: от слабой парализованности до полной неподвижности. В наследовании некоторых признаков наблюдается действие «генов-модификаторов», которые обусловливают степень проявления признака. Например, степень пятнистости собак различается от сплошной черной, через серию большей или меньшей пятнистости и почти до полностью белой окраски шерсти по всему телу (доги, овчарки, колли, фокстерьеры). Существенное значение в наследовании имеет так называемое плейотропное (множественное) действие гена, когда один и тот же ген влияет на образование разных признаков. У собак описан ген N, имеющий плейотропное действие. Он вызывает бесшерстность, дефекты и недоразвитие зубной системы, у борзых — белую окраску шерсти и глухоту, у собак породы дункер описан полулетальный ген «крапчатости», вызывающий крапчатость окраски шерсти, уменьшение размера глазного яблока, дефект Радужной оболочки (коломбо), глаукому с выпячиванием глазного яблока и далее слепоту. Плейотропное действие гена может вызвать голубую окраску радужной оболочки, глухоту, общую слабость, пониженную функцию размножения. Особый тип наследования наблюдается при взаимодействии между несколькими доминантными генами разных локусов в виде так называемого эпистаза. В этом случае гены, образующие эпистатическую серию, характерны тем, что каждый последующий ген как бы подавляется доминантным геном, занимающим предыдущее место в эпистатической серии, но, в свою очередь, он доминантен по отношению к последующему. Это хорошо прослежено в наследовании мастей у лошадей. Так, серая масть доминантна к другим мастям: (СС) > вороной (ВВ) > рыжей (сc, bb), вороная доминантна над рыжей. Существует так называемое полимерное (полигенное) воздействие генов разных локусов на один и тот же признак. Каждый из этих генов усиливает развитие признака, поэтому степень проявления признака зависит от количества доминантных генов разных локусов. Полигенное действие генов обусловливает наследственность количественных признаков (размер и живая масса тела, плодовитость, скорость бега у собак и т. п.) Из приведенного перечня действия и взаимодействия генов (внутриаллельное: доминирование, рецессивность, кодоминирование, сверхдоминирование, модифицирующее действие; межаллельное: новообразование, комплементарность, полигиния, плейотропия) ясно, что проявление действия генов многообразно и сложно. Передача генов от родителей потомкам и наследственное формирование признаков является сложным процессом, механизм которого заложен в молекулярной структуре ДНК. Воздействие некоторых внешних факторов может вызвать наследственную изменчивость, т. е. генную или хромосомную мутационную изменчивость. Большинство других внешних факторов, воздействующих на организм, вызывает ненаследственную, модификационную изменчивость. Сочетание наследственной и ненаследственной изменчивости формирует фенотипическое состояние организма, которое в условиях естественного или искусственного отбора приводит к эволюционному процессу и формирует свойства вида или какой-либо группы (породы) животных, разводимых человеком. Таким образом, наследственность, изменчивость и отбор являются факторами эволюционного процесса живых существ. ГЕНЕТИКА ОСНОВНЫХ ПРИЗНАКОВ У РАЗНЫХ ПОРОД СОБАК |