Нерешенные и перспективные проблемы теории и практики распределенных систем. Направления исследований. Обработка информации в суперсетях. Архитектура Грид. Мобильный компьютинг. Тотальный компьютинг. Глобальное "умное" пространство - В одной из своих статей в 2001 году Дж. Бэкус отметил, что компьютерная революция испытала три волны. Первая волна началась с коммерциализацией кремниевых чипов и продолжалась 10-15 лет. Вторая волна связана с развитием технологий программного обеспечения и началась приблизительно в середине 80-х годов XX века. Третья волна началась в конце 90-х годов XX века и связана с развитием сетей и использованием их для коммуникаций компьютеров.
- Третья волна послужила источником последующего бума информационных технологий. Рост технологических возможностей привел к тому, что компьютерные устройства стали значительно меньше по размерам и быстрее.
- В последние годы появилось несколько новых направлений компьютерных исследований. В самостоятельную дисциплину оформляется сетевой компьютинг, разработка распределенных систем.
- В основе технологий распределенных систем лежат удаленный доступ, высокая степень доступности ресурсов, устойчивость к сбоям и отказам, удаленное взаимодействие пользователей.
- В настоящее время развитие распределенных и параллельных систем стимулируется такими задачами как информационный поиск и создание механизмов индексирования для поисковых машин, обеспечение мобильного мультимедиа, построение мультиагентных интеллектуальных систем, хранение терабайтных и пентабайтных массивов данных, обработка естественных языков, исследования в биоинформатике. Традиционные задачи моделирования в науке и технике, как и раньше, требуют все больших мощностей.
- Эти задачи выдвигают требования к компьютерным системам, которые не могут быть удовлетворены в рамках просто "высокопроизводительных вычислений", например, с помощью параллельных суперкомпьютеров.
Вот только некоторые из требований и ограничений: - Пространственная распределенность компонент приложения и ресурсов системы, их динамическая природа (компоненты приложения и ресурсы могут динамически создаваться, перемещаться, становиться недоступными, уничтожаться).
- Увеличивающаяся важность соединения в одно логическое целое (при сохранении физической разделенности) структурированных и неструктурированных ресурсов распределенных данных.
- Мультидисциплинарные приложения требуют обеспечения взаимодействия отдельных моделей в рамках объединенной модели, требуют совместной работы исследователей, находящихся в разных научных центрах.
- Высокая степень взаимодействия пользователей требует значительной гибкости при проектировании, реализации, сопровождении и модификации компонент программного обеспечения – в поддержке жизненного цикла систем.
- Преобладание "нерегулярных" вычислений, не укладывающихся в циклы простой структуры с элементами массивов простого строения (что было бы так удобно для реализации на параллельном суперкомпьютере).
- Применение методов, первоначально появившихся в исследованиях по искусственному интеллекту, для решения задач управления программными приложениями на различных этапах их жизненного цикла.
Grid computing - Одним из новых направлений в распределенных системах, в рамках которых есть надежда продвинуться вперед в удовлетворении перечисленных требований, является Grid computing – обработка информации в суперсетях (Грид).
- В основе Грида лежат (в дополнение к распределенному компьютингу) федеративное объединение сообществ пользователей (без жесткой централизации), виртуализация ресурсов, стандартизация, маскирование неоднородности условий работы.
Архитектура Grid - Следуя традиционному построению распределенных систем, можно описать архитектуру Грид, состоящую из четырех слоев:
- Пользовательские интерфейсы, приложения и среда решения задач (problem-solving envieronment).
- Средства разработки, программные модели, языки программирования.
- Промежуточное программное обеспечение (middleware) Грид: управление ресурсами; фиксация информации и ее обнаружение; программное обеспечение безопасности; доступ к памяти; различные службы (вычислительные и коммуникационные).
- Неоднородные ресурсы и инфраструктура сетей.
- Грид как большой компьютер. Здесь имеется в виду доступ одного пользователя к большой суперкомпьютерной мощности для решения его задачи.
- Грид как коллекция научных данных. Требуется обеспечение доступа к большим объемам научных данных (результатов экспериментов, астрономических наблюдений и т.д.), рассредоточенных по различным научным центрам, оптимизация при передаче этих данных и их обработке
- Единое информационное пространство и виртуальные организации. Обеспечение одновременной работы большого количества пользователей в некоторой предметной области и/или организации с доступом к общим данным, с разделением ресурсов и взаимодействием пользователей через Грид.
- Семантический Грид – Грид как всемирное хранилище знаний. Географически распределенная база знаний, поддерживающая интеллектуальный информационный поиск, извлечение знаний из "сырых" данных (data mining), принятие решений.
Мобильный компьютинг - Самостоятельным направлением является мобильный компьютинг. В его основе (в дополнение к распределенному компьютингу) лежат:
- сети, обеспечивающие подключение к ним в любой географической точке (сотовые и проч.);
- мобильный доступ к информации (возможность получения информации при перемещении пользователя),
- адаптивность приложений,
- чувствительность к местоположению,
- энергонезависимость систем.
Тотальный компьютинг - М.Сатьянараян формулирует четыре новые области исследований в дополнение к областям мобильного компьютинга, вместе с ним образующие область тотального компьютинга:
- эффективное использование персонального умного пространства, имея в виду окружающие нас на работе, в транспорте, дома устройства с компьютерным управлением, необходимыми датчиками и исполнительными механизмами;
- невидимость (умного пространства) – минимальное отвлечение внимания пользователя на управление окружающими вещами;
- местная масштабируемость; имеется в виду обычное в программном обеспечении понятие масштабируемости с поправкой на то, что она должна иметь место для любой точки персонального умного пространства, обладающей вычислительными ресурсами: любая точка должна быть сделана настолько "мощной", насколько это необходимо пользователю.
- маскирование неоднородностей; под неоднородностью понимаются различия как в техническом плане (называемые, обычно, гетерогенностью), так и не технические – организационные структуры, бизнес-процессы, экономические факторы.
|