В пособии рассмотрены основные требования к эксплуатационным материалам, производимым за рубежом и широко поставляемым в Россию
Скачать 2.64 Mb.
|
Примечания. *На автомобилях ВАЗ переднеприводных в трансмиссии используется моторное масло, которое заливается в двигатель. **При отсутствии масла ТСп-10 и ТМ-5-12рк в зимний период допускается использовать смесь масел Тап-15В или ТСп-15к с 10–20% дизельного зимнего или арктического топлив (смесь работоспособна при температуре минус 40…50 ºC). В связи с тем, что у трансмиссионных масел, по сравнению с моторными, повышена вязкость (до 41 сСТ при 100 ºC) при эксплуатации автомобилей в условиях низких температур в заводских инструкциях и руководствах по эксплуатации автомобилей содержатся рекомендации о разбавлении трансмиссионных масел дизельным топливом [5]. Эти рекомендации отражены в табл. 3.6. Применение трансмиссионных масел при низких температурах Таблица 3.6
Глава 4 Пластичные смазкиСовременные смазочные масла успешно обеспечивают работу различных узлов трения. Но для их применения необходим картер, куда это масло заливают, устройства для залива, слива масла, контроль уровня. Для входящих и выходящих валов нужно обеспечить уплотнения. Кроме того, для предотвращения повышения или понижения давления масла при изменениях температуры, что приводит к выходу из строя уплотнений (сальников), необходимо сообщение с атмосферой (сапуны), через которое в картер могут попадать вода и механические примеси. В случае сложных узлов и агрегатов, таких как коробка передач, раздаточная коробка, главная передача, выполнение вышеперечисленных требований оправдано. Но для обеспечения смазки одного подшипника качения или скольжения или шарнира рулевой трапеции и т. п. чрезмерное усложнение конструкции нецелесообразно. В этом случае применяют пластичные смазки. Смазки позволяют удерживать вокруг узла трения запас смазочного масла, сочетая в себе свойства твердого тела и жидкости. Грубой моделью смазки может служить кусочек ваты, пропитанный маслом: волокнистое тело удерживает форму и запас масла, а под нагрузкой деформируется, уподобляясь вязкой жидкости. Другой, более точный пример – сотовый мед. Жидкий мед, находясь в сотах, не растекается, а под нагрузкой вместе с мягкими сотами меняет форму. Конечно, в пластичной смазке ячейки с маслом не такой правильной формы, как соты, а хаотичной, но в целом аналогия есть. Однако и эти сравнения не в полной мере характеризуют состав и предназначение пластичных смазок. В соответствии с ГОСТ 26098-84 «Нефтепродукты. Термины и определения» под пластичной смазкой понимается нефтепродукт или синтетический продукт, отличающийся наличием структурного каркаса, образованного частицами загустителя, в ячейки которого включено масло, и предназначенный для снижения износа трущихся уплотнений и соединений. По объёму производства пластичные смазки уступают смазочным маслам, однако число механизмов и узлов трения, смазываемых пластичными смазками, значительно больше, чем маслами. Это обуславливается малым расходом пластичных смазок. В большинстве случаев количество смазки, вводимое в узел трения, исчисляется в граммах, а иногда и в миллиграммах. К тому же сроки смены смазок обычно гораздо больше, чем масел. В ряде случаев смазки не требуют смены в течение всего срока службы механизмов. К числу типичных узлов трения в автомобиле, смазываемых пластичными смазками, можно отнести узлы трения шасси и управления, подшипники крестовин, подшипники агрегатов электрооборудования. По сравнению со смазочными маслами пластичные смазки обладают рядом преимуществ: – не вытекает под действием собственной массы из открытых узлов терния; – надёжней предохраняют узлы трения от загрязнения, воздействия влаги и различных коррозионно-агрессивных продуктов, удерживая их на поверхности; – снижаются, и значительно, затраты на смазочные материалы, несмотря на сравнительно высокую стоимость пластичных смазок; – эффективнее снимают шум и вибрацию в ряде узлов трения. В то же время пластичные смазки имеют и недостатки: – удержание во взвешенном состоянии металлических частиц износа трущихся деталей; – не всегда приемлемые низкие температуры плавления и высокие температуры застывания; – невысокая теплопроводность – плохой отвод тепла от трущихся деталей. Требования, предъявляемые к пластичным смазкам: – необходимые механические свойства, оцениваемые прицелом прочности, эффективной вязкостью и пенетрацией; – достаточная теплостойкость, оцениваемая температурой каплепадения; – водостойкость; сохранение однородности – не расслаиваться при хранении и в узлах трения на масло и загуститель (коллоидная стабильность); – хорошие защитные и противокоррозийные свойства; – надежное уплотнение смазываемых узлов и герметизируемых соединений; – технологичность в изготовлении; – невысокая стоимость; – нетоксичность и экологичность. 4.1. Состав пластичных смазок Пластичные смазки состоят из трёх основных компонентов – базовой основы, загустителя и присадок. Соединения, входящие в состав этих компонентов, отражены на рис. 4.1 [17]. Возможность применения смазок зависит от их эксплуатационных свойств, которые определяются составом смазок: 1. Базовая основа (жидкая фаза) в большинстве смазок составляет наибольшую часть – 75–90%. 2. Загустители имеют небольшой объём – до 25%. 3. Присадки улучшают структуру, стабильность, противоизносные, адге-зионные и другие свойства. В качестве жидкой фазы большинства смазок используются нефтяные масла. Такие смазки недефицитны, обладают рядом преимуществ по сравнению со смазками на синтетических продуктах. Вязкость масел, используемых для производства смазок, в основном до 10 сСт при 100 ºC, но иногда применяют и авиационные масла МС-20, и цилиндровые 52, и др. Для особо жестких условий работы (при низких и высоких температурах, при контакте с агрессивными продуктами) применяют смазки, жидкую фазу которых составляют продукты органического синтеза – синтетические масла. На их основе можно получить химически стойкие смазки с интервалом рабочих температур от минус 60 до 200 ºC; с высокими противоизносными свойствами, нейтральные к резине. Эксплуатационные свойства смазок в основном определяют не смазочные масла, а входящие в состав пластичных смазок загустители. Поэтому, классифицируя смазки по составу, прежде всего выделяют вид загустителя. По природе загустителя все смазки подразделяют на мыльные, углеводородные, неорганические и органические. Наиболее распространены мыльные загустители. Мыла – это соли высших жирных кислот, которые получают при нейтрализации высших жирных (органических) кислот гидроокисями металлов (NaOH, Ca(OH)2 и т. д.): где Ме – катион металла; R – алифатический радикал. На практике для изготовления мыл, используемых в смазках, применяют индивидуальные жирные кислоты, получаемые из природных жиров, сами природные жиры, жирные синтетические кислоты, образующиеся при окислении парафина. В качестве оснований для нейтрализации кислот используют гидроокиси многих металлов – лития, натрия, кальция, магния, цинка, стронция, бария, алюминия, свинца, серебра. Особенно широко распространены кальциевые, натриевые, литиевые и алюминиевые смазки. Кальциевые смазки – Са-смазки (солидолы) обладают низкими темпера-турами плавления, их применяют в узлах, где температура не превышает 70 ºC. Преимущества же солидолов – достаточно высокая водостойкость, хорошие защитные и противоизносные свойства Отличительными от солидолов свойствами обладают смазки на комплексных кальциевых мылах – кСа-мыло. Буква «к» указывает, что в составе загустителя находится несколько мыл, но химический символ и название определяют по тому мылу, которого в смеси больший процент. Основное преимущество таких смазок – высокая термостабильность. Некоторые из них сохраняют работоспособность до 200 ºC и выше. Они так же, как и солидолы, относятся к водостойким смазкам, но в ряде случаев имеют высокую гигроскопичность. Натриевые смазки (Na-смазки) обладают лучшей термической стойкостью, чем Са-смазки. Их применяют в узлах с температурой нагревания до 110…130 ºC. Основной недостаток Na-смазок – их низкая водостойкость. Литиевые смазки (Li-смазки) получают все большее распространение. Они применяются при температуре до 120 ºC и выше и нерастворимы в воде. Алюминиевые смазки (Al-смазки) обладают высокой водостойкостью, даже в контакте с морской водой, что и определяет их применение. Углеводородные смазки получают сплавлением нефтяного масла с твердыми углеводородами (парафинами, церезинами, петролатумом). Это самые дешевые смазки. Высокие водостойкость и защитные свойства предопределили их широкое использование в качестве консервационных материалов. Органические загустители (пигменты, производные мочевины и др.) улучшают эксплуатационные свойства смазок. Пигментные смазки (Pg-смазки) отличаются весьма высокой термической стойкостью. Многие из них сохраняют стабильность при температуре 250…300 ºC и выше. Внешне Pg-смазки отличаются ярким цветом. Примером смазок, получаемых загущением производными мочевинами, являются уреатные (Ur-смазки). Они также относятся к термически стабильным смазкам. Среди неорганических смазок наиболее распространены силикагелевые (Si-смазки). Силикагель устойчив к окислению и действию агрессивных сред, но Si-смазки обладают низкими защитными и противоизносными свойствами. К неорганическим загустителям относятся и полимеры: политетрафторэтилен, поливинилхлорид и др. Многие из них, особенно галоидоорганические, отличаются стойкостью к агрессивным средам. Присадки (добавки) существенно улучшают эксплуатационные свойства пластичных смазок. Некоторые смазки наряду с загустителем содержат наполнители – твердые добавки (дисульфид молибдена, графит, слюду и др.), повышающие эффективность применения смазок. Во многих смазках важную роль играют поверхностно-активные вещества, например глицерин и часто вода, стабилизирующие коллоидные системы мыло-масло. Количество воды в смазках зависит от свойств мыла и содержания других поверхностно-активных веществ и составляет в некоторых смазках до 2%, а в других – сотые доли процента. Ряд смазок в своём составе содержит присадки. Наибольшее распространение в качестве присадок к пластичным смазкам получили антиокислительные. Распространены также антикоррозийные и противо-износные присадки. Последние добавляют к смазкам, имеющим невысокие защитные свойства. В качестве таких присадок используют жирные кислоты, их мыло, некоторые амины, соли нафтеновых и сульфоновых кислот. Противоизносные присадки представляют собой обычно соединения серы, хлора и фосфора в различных сочетаниях, соединения некоторых металлов. В ряде случаев используют осернённые растительные и животные жиры. При введении присадок обязательно учитывают возможные вредные побочные воздействия их на структуру и свойства смазок. Например, дисульфид молибдена, снижая скорость изнашивания металлов в условиях трения, в большинстве случаев повышает коррозионность смазок. Следовательно, при введении присадок как в процессе изготовления смазок, так и в ходе их применения обязательно изучение всего комплекса воздействия этих присадок как на саму смазку, так и на конструкционные материалы. Обозначение пластичных смазок Чрезвычайно широкое применение пластичных смазок предопределило их огромный ассортимент. Используемые ранее наименования смазок не раскрывали их основных свойств. Поэтому в настоящее время, кроме наименования, установлено и обозначение пластичной смазки, как это определено ГОСТ 23258-78 «Смазки пластичные. Наименование и обозначение». 1. Наименование марок пластичных смазок условно, состоит из одного слова, а для различных модификаций одной смазки, дополнительно к наименованию допускается использование буквенных или цифровых индексов. Например: солидол «Ж», Литол-24 и т. д. 2. Обозначение пластичных смазок указывается во вводной части нормативно-технической документации. Это обозначение состоит из пяти буквенных или цифровых индексов, характеризующих назначение, состав и некоторые свойства смазок. I. На первом месте в обозначении указывается назначение пластичной смазки. По этому признаку смазки разделяют на четыре группы: – антифрикционные – для снижения износа и трения скольжения сопрягаемых деталей; – консервационные – для предотвращения коррозии при хранении, транспортировании и эксплуатации; – канатные – для предотвращения коррозии и износа стальных канатов; – уплотнительные – для герметизации зазоров, облегчения сборки и разборки арматуры, манжет, резьбовых, разъемных и других подвижных соединений. Наиболее обширная группа смазок – антифрикционные. Большинство смазок, применяемых на автомобилях, относятся к этой группе. Смазки этой группы делятся на подгруппы, обозначаемые буквами русского алфавита в соответствии с индексами: С – смазки общего назначения (работоспособны до 70 ºC); О – для повышенной температуры (до110 ºC); М – многоцелевые, т. е. работоспособны от минус 30 ºC до 130 ºC и в условиях повышенной влажности; Ж – термостойкие (более 150 ºC); Н – морозостойкие (ниже минус 40 ºC); И – противоизносные и противозадирные; Х – химически стойкие; П – приборные; Т – редукторные (трансмиссионные); Д – приработочные пасты; Консервационные смазки обозначают буквой З (защитная). Канатные смазки обозначаются буквой К. Уплотнительные смазки включают три подгруппы и обозначаются: А – арматурные (для манжет); Р – резьбовые; В – вакуумные (для уплотнения в вакуумных системах). В зависимости от применения смазки ещё могут быть разделены на смазки общего назначения, многоцелевые и специализированные. Канатные и уплотнительные смазки для автомобильной техники применяют ограничено. II. На втором месте в обозначении указывают тип загустителя. Тип загустителя обозначают буквами русского алфавита в соответствии с индексами (табл. 4.1) Таблица 4.1 Обозначение типа загустителей пластичных смазок
|