Великая теорема Ферма или Последняя теорема Ферма
Скачать 70.15 Kb.
|
Вели́кая теоре́ма Ферма́ (или Последняя теорема Ферма) — одна из самых популярных теорем математики. Её условие формулируется на понятийном уровне среднего общего образования, а доказательство теоремы искали многие математики более трёхсот лет. Окончательно доказана в 1995 году Эндрю Уайлсом. Формулировка Теорема утверждает, что:
[править]История Для случая эту теорему в X веке пытался доказать ал-Ходжанди, но его доказательство не сохранилось. В общем виде теорема была сформулирована Пьером Ферма в 1637 году на полях «Арифметики» Диофанта. Дело в том, что Ферма делал свои пометки на полях читаемых математических трактатов и там же формулировал пришедшие на ум задачи и теоремы. Теорему, о которой ведётся речь, он записал с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было поместить на полях книги: Наоборот, невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него. Оригинальный текст(лат.)[показать] Несколько позже сам Ферма опубликовал доказательство частного случая для , что добавляет сомнений в том, что у него было доказательство общего случая. Эйлер в 1770 году доказал теорему для случая [1], Дирихле и Лежандр в 1825 — для , Ламе — для . Куммер показал, что теорема верна для всех простых n, меньших 100, за возможным исключением т. н. иррегулярных простых 37, 59, 67. Над полным доказательством Великой теоремы работало немало выдающихся математиков и множество дилетантов-любителей; считается, что теорема стоит на первом месте по количеству некорректных «доказательств». Тем не менее эти усилия привели к получению многих важных результатов современной теории чисел. Давид Гильберт в своём докладе «Математические проблемы» на II Международном конгрессе математиков (1900) так отозвался об этой проблеме[2]: Проблема доказательства этой неразрешимости являет разительный пример того, какое побуждающее влияние на науку может оказать специальная и на первый взгляд малозначительная проблема. Ибо, побуждённый задачей Ферма, Куммер пришёл к введению идеальных чисел и к открытию теоремы об однозначном разложении чисел в круговых полях на идеальные простые множители — теоремы, которая теперь, благодаря обобщениям на любую алгебраическую числовую область, полученным Дедекиндом и Кронекером, является центральной в современной теории чисел и значение которой выходит далеко за пределы теории чисел в область алгебры и теории функций. В 1908 году немецкий любитель математики Вольфскель завещал 100 000 немецких марок тому, кто докажет теорему Ферма. Однако после Первой мировой войны премия обесценилась. В 1980-х годах появился новый подход к решению проблемы. Из гипотезы Морделла, доказанной Фальтингсом в 1983 году, следует, что уравнение при может иметь лишь конечное число взаимно простых решений. Последний, но самый важный, шаг в доказательстве теоремы был сделан Уайлсом в сентябре 1994 года. Его 130-страничное доказательство было опубликовано в журнале «Annals of Mathematics»[3]. Доказательство основано на предположении немецкого математика Герхарда Фрая о том, что Великая теорема Ферма является следствием гипотезы Таниямы — Симуры (это предположение было доказано Кеном Рибетом при участии Ж.‑П.Серра[4]). Первый вариант своего доказательства Уайлс опубликовал в 1993 году (после 7 лет напряжённой работы), но в нём вскоре обнаружился серьёзный пробел, который с помощью Ричарда Лоуренса Тейлора удалось достаточно быстро устранить[5]. В 1995 году был опубликован завершающий вариант[6]. «Ферматисты»Простота формулировки теоремы Ферма (доступная в понимании даже школьнику), а также сложность единственного известного доказательства (или неведение о его существовании), вдохновляют многих на попытки найти другое, более простое, доказательство. Людей, вопреки здравому смыслу пытающихся доказать теорему Ферма элементарными методами, называют «ферматистами» или «ферматиками».[7] Ферматисты зачастую не владеют основами математической культуры и допускают ошибки в арифметических действиях или логических выводах, хотя некоторые представляют весьма изощренные «доказательства», в которых трудно найти ошибку. Доказывать теорему Ферма в среде любителей математики было настолько популярно, что в 1972 году журнал «Квант», публикуя статью о теореме Ферма, сопроводил ее следующей припиской:[7]
Немецкому математику Эдмунду Ландау очень докучали «ферматисты». Чтобы не отвлекаться от основной работы, он заказал несколько сот бланков со следующим текстом:
Находить ошибку и заполнять пробелы в бланке он поручал своим аспирантам. Примечательно, что отдельные ферматисты добиваются публикации своих (неверных) «доказательств» в ненаучной прессе, которая раздувает их значение до научной сенсации.[8][9] Впрочем, иногда такие публикации появляются и в уважаемых научных изданиях,[10] как правило, с последующими опровержениями.[11] Среди других примеров: Брошюра В. И. Будкина, изданная в Ярославле под названием «Методика познания „истины“. Доказательство Великой теоремы Ферма» (47 стр., 5000 экз., Верхне-Волжское книжное издательство, 1975).[12] Авторское свидетельство на доказательство теоремы Ферма, выданное Министерством образования и науки Украины Л. В. Шаповаловой и Г. А. Середкину. (Следует пояснить, что этот документ не удостоверяет каким-либо образом правильность доказательства, а лишь регистрирует авторские права на поданный в Министерство образования и науки печатный труд; на это министерство возложена обязанность ведения реестра таких свидетельств.[13]) [править]Теорема Ферма в культуре и искусстве Великая теорема Ферма стала символом труднейшей научной проблемы и в этом качестве часто упоминается в беллетристике. Далее перечислены некоторые произведения, в которых теорема не просто упомянута, но является существенной частью сюжета или идеологии произведения. В повести Е. Велтистова «Победитель невозможного» друг Сыроежкина и Электроника Вова Корольков в качестве свободного задания по математике доказал Великую теорему Ферма. В телесериале «Звёздный Путь», капитан космического корабля Энтерпрайз NCC-1701-D Жан-Люк Пикар был озадачен разгадкой Великой теоремы Ферма во второй половине XXIV века, о чём он поведал в начале серии своему первому помощнику. Таким образом, создатели фильма предполагали, что решения у Великой теоремы Ферма не будет в ближайшее время. Серия «Рояль» с этим эпизодом была снята в 1989 году, когда Джон Уайлс был в самом начале своих работ. В действительности решение было найдено всего спустя 5 лет. В рассказе Артура Порджеса «Саймон Флэгг и дьявол»[14] профессор Саймон Флегг просит помощи дьявола в доказательстве теоремы, но и дьявол оказывается бессилен. По этому рассказу был также снят игровой научно-популярный фильм «Математик и чёрт» (СССР, 1972, производство Центрнаучфильм, творческое объединение «Радуга», режиссёр Райтбурт).[15] В рассказе Кира Булычева «Мечта заочника» студент-заочник Гаврилов приходит к профессору Минцу и приносит купленную курсовую работу, в которой приводится доказательство теоремы, с просьбой объяснить, что он написал. В посвящённой Хэллоуину 1995 года серии «Симпсонов» двумерный Гомер Симпсон случайно попадает в третье измерение. Во время его путешествия в этом странном мире, в воздухе парят геометрические тела и математические формулы, включая равенство . Калькулятор с точностью не более 9 значащих цифр подтверждает это равенство: 178212 + 184112 = 2541210258614589176288669958142428526657 ≈ 254121026·1031 192212 = 2541210259314801410819278649643651567616 ≈ 254121026·1031 Тем не менее, даже без вычисления точных значений легко видеть, что равенство неверно: левая часть — нечётное число, а правая часть — чётное. В первом издании «Искусства программирования» Дональда Кнута теорема Ферма приведена в качестве упражнения с математическим уклоном в самом начале книги и оценена максимальным числом (50) баллов, как «исследовательская проблема, которая (насколько это было известно автору в момент написания) ещё не получила удовлетворительного решения. Если читатель найдет решение этой задачи, его настоятельно просят опубликовать его; кроме того, автор данной книги будет очень признателен, если ему сообщат решение как можно быстрее (при условии, что оно правильно)». В третьем издании книги это упражнение уже требует знаний высшей математики и оценивается лишь в 45 баллов. В фильме «Доказательство» сюжет крутится вокруг доказательства теоремы Ферма, но это ни разу явно не упоминается в фильме. В книге Стига Ларссона «Девушка, которая играла с огнём»[16] главная героиня Лисбет Саландер, обладающая редкими способностями к аналитике и фотографической памятью, в качестве хобби занята доказательством Великой теоремы Ферма, на которую она наткнулась, читая фундаментальный труд «Измерения в математике», в котором приводится и доказательство Эндрю Уайлса. Лисбет не хочет изучать готовое доказательство, а главным интересом становится поиск собственного решения. Поэтому всё своё свободное время она посвящает самостоятельному поиску «замечательного доказательства» теоремы великого француза, но раз за разом заходит в тупик. В конце книги Лисбет находит доказательство, которое не только совершенно отлично от предложенного Уайлсом, но и является настолько простым, что сам Ферма мог бы его найти. Однако, после ранения в голову она его забывает, и Ларссон не приводит никаких подробностей этого доказательства. Мюзикл «Последнее танго Ферма», изданный институтом Клэя, создан в 2000 году Дж. Розенблумом и Дж. С. Лессер по мотивам реальной истории Эндрю Уайлса. Главный герой по имени Дэниел Кин завершает доказательство теоремы, а дух самого Ферма старается ему помешать[17]. За несколько дней до своей смерти Артур Кларк успел отрецензировать рукопись романа «Последняя Теорема», над которой он трудился в соавторстве с Фредериком Полом. Книга вышла уже после смерти Кларка. В рассказе Натальи Дарьяловой «Великая и загадочная» сюжет строится на теореме Ферма. Рассказывается о том, как молодой человек, будучи студентом, занялся теоремой Ферма, и впоследствии стал математиком, получил несколько важных научных результатов, но совершенно загубил свою личную жизнь. В романе П. А. Загребельного «Разгон»[18] скромный преподаватель математики из Одессы сумел доказать теорему, через некоторое время он становится академиком и возглавляет очень серьезное киевское НПО, занимающееся созданием электронно-вычислительных систем. А.П. Казанцев в своем романе "Острее шпаги" в 1983 в стиле Дюма довольно ярко описал Пьера Ферма и предложил оригинальную версию отсутствия доказательства самого Ферма. БиографияПьер Ферма родился 17 августа 1601 года в гасконском городке Бомон-де-Ломань (Beaumont-de-Lomagne, Франция). Его отец, Доминик Ферма, был зажиточным торговцем, вторым городским консулом. В семье, кроме Пьера, были ещё один сын и две дочери. Ферма получил юридическое образование — сначала в Тулузе, а затем в Бордо и Орлеане. В 1631 году, успешно закончив обучение, Ферма выкупил должность королевского советника парламента (другими словами, члена высшего суда) в Тулузе. В этом же году он женился на дальней родственнице матери, Луизе де Лонг. У них было пятеро детей[1]. Быстрый служебный рост позволил Ферма стать членом Палаты эдиктов в городе Кастр (1648). Именно этой должности он обязан добавлением к своему имени признака знатности — частицы de; с этого времени он становится Пьером де Ферма. Около 1652 года Ферма пришлось опровергать сообщение о своей кончине во время эпидемии чумы; он действительно заразился, но выжил. В 1660 году планировалась его встреча с Паскалем, но из-за плохого здоровья обоих учёных встреча не состоялась[1]. Пьер де Ферма умер 12 января 1665 года в городе Кастр, во время выездной сессии суда. Первоначально его похоронили там же, в Кастре, но вскоре (1675) прах перенесли в семейную усыпальницу Ферма в церкви августинцев (Тулуза). Старший сын, Клеман-Самуэль, издал посмертное собрание его трудов, из которого современники и узнали о замечательных открытиях Пьера Ферма. Современники характеризуют Ферма как честного, аккуратного, уравновешенного и приветливого человека, блестяще эрудированного как в математике, так и в гуманитарных науках, знатока многих древних и живых языков, на которых он писал неплохие стихи[2]. [править]Научная деятельностьБюст Ферма в тулузском Капитолии Работа советника в парламенте города Тулузы не мешала Ферма заниматься математикой. Постепенно он приобрёл славу одного из первых математиков Франции, хотя и не писал книг (научных журналов ещё не было), ограничиваясь лишь письмами к коллегам. Среди его корреспондентов были Р. Декарт,Ж. Дезарг, Ж. Роберваль и другие. Открытия Ферма дошли до нас благодаря сборнику его обширной переписки (в основном через Мерсенна), изданной посмертно сыном Ферма. В отличие от Галилея, Декарта и Ньютона, Ферма был чистым математиком — первым великим математиком новой Европы. Независимо от Декарта он создал аналитическую геометрию. Раньше Ньютона умел использовать дифференциальные методы для проведения касательных, нахождения максимумов и вычисления площадей. Правда, Ферма, в отличие от Ньютона, не свёл эти методы в систему, однако Ньютон позже признавался, что именно работы Ферма подтолкнули его к созданию анализа [3]. Главная же заслуга Пьера Ферма — создание теории чисел. [править]Теория чиселМатематики Древней Греции со времён Пифагора собирали и доказывали разнообразные утверждения, относящиеся к натуральным числам (например, методы построения всех пифагоровых троек, метод построения совершенных чисел и т. п.). Диофант Александрийский (III век н. э.) в своей «Арифметике» рассматривал многочисленные задачи о решении в рациональных числах алгебраических уравнений с несколькими неизвестными (ныне диофантовыми принято называть уравнения, которые требуется решить в целых числах). Эта книга (не полностью) стала известна в Европе в XVI веке, а в 1621 году она была издана во Франции и стала настольной книгой Ферма. Ферма постоянно интересовался арифметическими задачами, обменивался сложными задачами с современниками. Например, в своём письме, получившем название «Второго вызова математикам» (февраль 1657), он предложил найти общее правило решения уравнения Пелля в целых числах. В письме он предлагал найти решения при a=149, 109, 433. Полное решение задачи Ферма было найдено лишь в 1759 году Эйлером. Начал Ферма с задач про магические квадраты и кубы, но постепенно переключился на закономерности натуральных чисел — арифметические теоремы. Несомненно влияние Диофанта на Ферма, и символично, что он записывает свои удивительные открытия на полях «Арифметики». Ферма обнаружил, что если a не делится на простое число p, то число всегда делится на p (см. Малая теорема Ферма). Позднее Эйлер дал доказательство и обобщение этого важного результата: см. Теорема Эйлера. Обнаружив, что число простое при k ≤ 4, Ферма решил, что эти числа простые при всех k, но Эйлер впоследствии показал, что при k=5 имеется делитель 641. До сих пор неизвестно, конечно или бесконечно множество простых чисел Ферма. Эйлер доказал (1749) ещё одну гипотезу Ферма (сам Ферма редко приводил доказательства своих утверждений): простые числа вида 4k+1 представляются в виде суммы квадратов (5=4+1; 13=9+4), причём единственным способом, а для чисел, содержащих в своём разложении на простые множители простые числа вида 4k+3 в нечётной степени, такое представление невозможно. Эйлеру это доказательство стоило 7 лет трудов; сам Ферма доказывал эту теорему косвенно, изобретённым им индуктивным «методом бесконечного спуска». Этот метод был опубликован только в1879 году; впрочем, Эйлер восстановил суть метода по нескольким замечаниям в письмах Ферма и неоднократно успешно его применял. Позже усовершенствованную версию метода применялиПуанкаре и Андре Вейль. Ферма разработал способ систематического нахождения всех делителей числа, сформулировал теорему о возможности представления произвольного числа суммой не более четырёх квадратов (теорема Лагранжа о сумме четырёх квадратов). Самое знаменитое его утверждение — «Великая теорема Ферма» (см. ниже). Многие арифметические открытия Ферма опередили время и были забыты на 70 лет, пока ими не заинтересовался Эйлер, опубликовавший систематическую теорию чисел. Одна из причин этого — интересы большинства математиков переключились на математический анализ. [править]Математический анализ и геометрияФерма практически по современным правилам находил касательные к алгебраическим кривым. Именно эти работы подтолкнули Ньютона к созданию анализа[3]. В учебниках по математическому анализу можно найти важную лемму Ферма, или необходимый признак экстремума: в точках экстремума производная функции равна нулю. Ферма сформулировал общий закон дифференцирования дробных степеней и распространил формулу интегрирования степени на случаи дробных и отрицательных показателей. Наряду с Декартом, Ферма считается основателем аналитической геометрии. В работе «Введение к теории плоских и пространственных мест», ставшей известной в 1636 году, он первый провёл классификацию кривых в зависимости от порядка их уравнения, установил, что уравнение первого порядка определяет прямую, а уравнение второго порядка — коническое сечение. Развивая эти идеи, Ферма пошёл дальше Декарта и применил аналитическую геометрию к пространству. [править]Другие достиженияНезависимо от Паскаля Ферма разработал основы теории вероятностей. Именно с переписки Ферма и Паскаля (1654), в которой они, в частности, пришли к понятию математического ожидания и теоремам сложения и умножения вероятностей, отсчитывает свою историю эта замечательная наука. Результаты Ферма и Паскаля были приведены в книге Гюйгенса «О расчётах в азартной игре» (1657), первом руководстве по теории вероятностей. Имя Ферма носит основной принцип геометрической оптики, в силу которого свет в неоднородной среде выбирает путь, занимающий наименьшее время (впрочем, Ферма считал, что скорость света бесконечна, и формулировал принцип более туманно). С этого тезиса начинается история главного закона физики — принципа наименьшего действия. Ферма перенёс на трёхмерный случай (внутреннего касания сфер) алгоритм Виета для задачи Аполлония (касания окружностей)[4]. |