биология. Вопрос 1. Общая харка живого. Фундаментальные свойства и уровни организации жизни. Биосоциальная
Скачать 1.33 Mb.
|
изотонических и гипотонических растворов на состояние клеток. Одной из важнейших функций плазмолеммы является транспортная функция. К основным видам относят пассивный транспорт-диффузия (по градиенту концентрации, без затрат энергии), активный транспорт (против градиента концентрации и с затратой энергии) и везикулярный транспорт (транспорт в мембранной упаковке, осуществляется с затратой энергии). Путем диффузии в клетку (и из клетки) проникают, например: неорганические ионы, мелкие органические молекулы и вода. Транспорт воды через плазмолемму протекает по закону осмоса, т.е. переход из области меньшей концентрации солей в область их большей концентрации. Все растворы можно разделить на 3 группы:1.изотонические – растворы, концентрация которых равна концентрации солей в цитоплазме, т.е. меньше 0,9%; 2.Гипотонические-растворы, концентрация которых меньше концентрации солей в цитоплазме, т.е. меньше 0,9%; 3. Гипертонические - растворы, концентрация которых выше, чем в клетке. При помещении клетки в изотонический раствор кол-во воды в клетке не меняется. В гипотоническом растворе вода из раствора переходит в клетку. Гипертонические растворы, напротив, поглощают воду из клеток. ВОПРОС №14 14. Образование энергии в животной клетке и ее утилизация. Небольшие количества АТФ образуется в клетках входе гликолиза и реакций цикла Кребса. Основные энергетические потребности клетки удовлетворяются благодаря синтезу АТФ в ходе окислительного фосфорилирования в элетронтранспотной цепи митохондрий. При этом поставщиком энергии служат ионы водорода, образующиеся при катоболизмев основном углеводов и жиров. И транспортируемые на кристы митохондрий никотинамидадеминдинуклеотидом(НАДН) и флавинадениндинуклеотидом(ФАДН). В ходе катаболических реакций все пищевые продукты подвержены разложению до углекислого газа и воды. В процессе катаболизма образуется АТФ. В клетке она расходуется на 3 основных вида работы: 1) механическую работу (биение жгутиков, мышечное сокращение и.т.д.); 2) транспорт веществ через мембраны . 3) обеспечение анаболических реакций (биосинтез) Анаболизм и катаболизм в клетке неразрывно взаимосвязаны. Биосинтез макромолекул обеспечивается обращением основных реакций катаболизма. Однако некоторые звенья требуют больших затрат энергии и осуществления дополнительных биохимических реакций. Исходным материалом для синтеза макромолекул, характерных для клетки, могут служить как мономеры (аминокислоты, моносахара, глицерин и жирные кислоты), так и компоненты цикла Кребса. ВОПРОС №15. 15.Механизмы репликации ДНК. Азотистое основание одной нити ДНК связано «водородным» мостиком с основание другой, причем так, что аденин может быть связан, только с тимином, а цитозин, только с гуанином. Они комплиментарны друг другу. Отсюда следует, что порядок расположения оснований одной цепи определяет их порядок в другой. Отсюда следуют, что расположение оснований одной цепи определяет их порядок в другой. Именно на этом основано свойство ДНК, объясняющее ее важную биологическую роль: способность к самовоспроизведению, т.е. репликации. Репликация ДНК происходит под действием фермента полимеразы. При этом комплиментарные цепи молекул ДНК раскручиваются и расходятся. Затем каждая из них начинает синтезировать новую. Поскольку каждое из оснований в нуклеотидах может присоединить другой нуклеотид только строго определенного строения, происходит точное воспроизведение материнской молекулы. Образуются 2 идентичные биоспирали, в каждой из которых одна цепочка – прежняя, другая - новая. Такой способ синтеза получил названия полу консервативного. Подтверждение экспериментом с использованием меченых атомов. К инициаторному белку присоединяется ДНК- геликаза, которая разрывает водородные связи между комплементарными цепями ДНК и образует репликационную вилку. Поддерживают структуру репликационной вилки дестабилизирующие белки. Далее праймаза синтезирует короткие фрагменты РНК, которые ДНК- полимераза –использует как затравку (праймер) для синтеза дочерних цепей ДНК. Цепи ДНК антипарраллельны. Поэтому учитывая, что ДНК- полимераза может вести синтез ДНК только от 5 к 3 концу, синтез лидирующей цкпи осуществляется непрерывно (на ней образуется одна молекула РНК- завтрака), а синтез отстающей цепи идет короткими фрагментами назад( фрагментами Оказки). На отстающей цепи синтезируется множество РНК- затравок. В дальнейшем праймеры вырезаются ферментом ДНК- лигазой и на их место вшиваются дезоксирибонуклеотиды. При образовании репликационной вилки участок ДНК впереди вилки сильно закручивается и спутывается. Это напряжение ДНК нимается ферментом ДНК- топоизомеразой, который работает по принципу «ножниц и клея». ВОПРОС №16. 16. Механизмы транскрипции. Посттранскрипционные изменения наследственного материала. Процесс переписывания информации с молекулы ДНК на молекулу про-иРНК называется транскрипция. Синтез молекул про-иРНК осуществляется под действием специального фермента РНК-Полимеразы. Этот фермент передвигается вдоль молекулы ДНК от одного конца к другому, удерживая на себе нуклеотиды и растущую про-иРНК, Последовательность оснований в образующейся молекуле про-иРНК точно отражает порядок чередования оснований в ДНК. Однако молекула про-иРНК гораздо крупнее зрелой иРНК. В процессе созревания иРНК и бактерий происходит отщепление концов молекул, а у эукариот и некоторых вирусов, паразитирующих у животных, все сложней. иРНК содержит в себе ряд инертных участков (интронов). В процессе созревания иРНК специальные ферменты вырезают интроны и сшивают оставшиеся участки. В процессе созревания иРНК специальные ферменты вырезают интроны и сшивают оставшиеся участки. Поэтому последовательность нуклеотидов в созревшей иРНК не является полностью комплиментарной нуклеотидам ДНК. В иРНК рядом могут стоять нуклеотиды, комплиментарные которым нуклеотиды в ДНК находятся друг от друга на значительном расстоянии. Процессы связанные с созреванием иРНК, называются процессингом. Осуществляются в ядре во время перехода иРНК из ядра в цитоплазму. ВОПРОС №17. 17.Биосинтез белка: цитоплазматические и рибосомные события инициации. Начало синтеза пептида, заключается в объединении двух находящихся до этого порознь в цитоплазме субчастиц рибосомы на определенном участке мРНК и присоединении к ней первой аминоацил-тРНК. Этим задается также рамка считывания информации, заключенной в мРНК. В молекуле любой мРНК вблизи ее 5’- конца имеется участок, комплиментарный рРНК малой субъединицы рибосомы и специфически узнаваемый ею. Рядом с ним располагается инициирующий стартовый кодон АУГ, шифрующий аминокислоту метионин. Малая скбчастица рибосомы соединяется с мРНК таким образом, что стартовый кодон АУГ располагается в области, соответствующей П-участку. При этом только инициирующая тРНК, несущая метионин, способная занять место в недостроенном П-участку малой субчастицы и комплиментарного соединения со старт- кодоном. После описанного события происходит объединение большой и малой субчастиц рибосомы с образованием ее пептидильного и аминоацильного участков. К концу фазы инициации П-участок занят аминоацил – тРНК, связанной с метионином, тогда как в А- участке рибосомы располагается следующий за стартовым кодоном. Описанные процессы инициации трансляции кактализируются особыми белками – факторами инициации, которые подвижно связаны с малой суючастицей рибосомы. По завершении фазы инициации и образования комплекса рибосома - м РНК - инициирующая аминоацил – тРНК эти факторы отделяются от рибосомы. ВОПРОС №18. 18.Биосинтез белка: стадии элонгации и терминации трансляции. Фаза инициации: Аминокислоты доставляются в рибосомы различными тРНК, которых в клетке несколько десятков. Молекулы тРНК способны выполнять эту функцию потому, что имеют 2 активных центра. К одному из них прикрепляются молекулы аминокислоты. Прикрепление осуществляется с участием АТФ особыми ферментами (белками - синтетазами), число которых около 20 ( как и аминокислот). В результате соединения аминокислот и тРНК образуется комплекс аминоацил-тРНК; аминокислоты при этом активируются. Процесс узнавания аминокислот тРНК получил название рекогниции. Второй активный центр в аминоацил-тРНК состоит из 3 нуклеотидов и называется антикодоном. Антикодон может взаимодействовать с комплиментарным кодоном на молекуле иРНК и передавать соответствующую аминокислоту для синтеза белка. Следовательно, тРНК осуществляет считывание информации с иРНК. Внутри рибосомы в каждый данный момент находится всего два триплета иРНК. Рибосома движется относительно иРНК только в одном направлении, перемещаясь на один триплет. Синтез белковой молекулы происходит в большой субъединице, где против большого субъединице, где против одного триплета расположен аминоацильный центр, а против другого – пептидильный (участок, где формируются пептидные связи). Молекула тРНК, несущая первую аминокислоту белковой молекулы, присоединяется к комплиментарному ей кодону против аминоацильного центра(первый кодон занят инициирующей синтез группой. Рибосома перемещается на один триплет вперед, и тРНК- в пептидильный центр. К новому кодону рибосомы присоединяется новая тРНК, несущая вторую аминокислоту; она занимает аминоацильный центр. Затем между аминокислотами возникает пептидная связь и образуется дипептид. Одновременно разрушается связь между первой аминокислотой и ее тРНК, которая удаляется, а дипептид становится связанным только со второй тРНК. Рибосома еще на один триплет. Комплекс вторая тРНК-дипептид перемещается в пептидильный центр, а новый кодон занимает третья тРНК, связанная с третьей аминокислотой. Между второй и третьей аминокислотой образуется пептидная связь. Образовавшийся трипептид теряет связь со второй тРНК и оказывается соединенным только с третьей тРНК. Вторая тРНК удаляется, рибосома перемещается вперед, и третья тРНК с полипептидом занимает пептидильный центр. Это происходит до тех пор, пока путем последовательного присоединения аминокислот не будет построена вся полипептидная цепь. ВОПРОС №1919. Регуляция экспрессии генов. Большая часть генома клеток многоклеточных организмов находится в неактивном(репрессированном ) состоянии. Активно функционируют лишь 7-10% генов. Спектр функционирующих генов определяется типом клетки, стадией клеточного цикла и периодом онтогенеза. Все функционирующие гены можно подраздклить на две группы. ГЕНЫ: 1) Конститутивные - гены определяющие синтез белков общего назначения(рибосомных.гистонов. тубулинов и т. д.). Транскрибирование этих генов определяется присоединением РНК- полимеразы к промоторам и. видимо. Не подчиняется каким либо другим регулирующим воздействиям. 2) Регулируемые - активность этих геновнаходится под контролем различных регулирующих факторов. Основными их них являются регуляторные белки. РЕГУЛЯТОРНЫЕ БЕЛКИ : РЕПРЕССОРЫ , АКТИВАТОРЫ(АПОИНДУКТОРЫ). Регуляторные белки являются продуктами действия генов- регуляторов. Связываясь с определенными участками ДНК способствуют или препятствуют присоединению РНК- полимеразы к промотору. Различают два типа регуляторов. Репрессоры. При контакте с ДНК занимают часть промотора или располагаются между промотором и сруктурной частью гена. Определяют негативный контроль экспрессии гена. Активаторы(Апоиндукторы) . При контакте с ДНК занимают область перед промотором (оператор) и облегчают связывание с ним РНК –полимеразы. Определяют позитивный контроль экспрессии гена. Наряду с генетическими факторами в регуляции экспрессии ионов на стадии транскрипции принимают участие негенетические факторы – эффекторы. К ним относятся вещества небелковой природы. Способные соединяться с белками регуляторами и изменять их сродство к промотору. Среди эффекторов различают коактиваторы(индукторы) и корепрессоры. Индукторы запускают транскрипцию, а корепрессоры препятствуют ее осуществлению. Механизм действия индукторов состоит в инактивации(блокировании) белков –репрессоров, в результате чего они перестают связываться с промотором или – во взаимодействии с апоиндукторами, что облегчает связывание РНК- полимеразы с промотором. Корепрессоры или блокируюь апоиндукторы, которые теряют способность связываться с оператором, или активируют репрессоры, находящиеся в неактином состоянии. ВОПРОС №20 20. репарация как механизм поддержания генетического гомеостаза. Под действием различных химических и физических агентов, а так же при нормальном биосинтезе ДНК в клетке могут возникнуть повреждения. Клетки обладают механизмами исправления повреждений в нитях ДНК. Способность клеток к исправлению повреждений в молекулах ДНК получила название репарации. Первоначально способность к репарации была обнаружена у бактерий, подвергшихся воздействию ультрафиолетовых лучей. В результате обучения целостность молекул ДНК нарушается, так как в ней возникают димеры, т.е. сцепленные между собой соседние пиримидиновые основания. Димеры образуются между Т - Т, Т – Ц; Ц –У ; Ц – Ц; Т – У; У – У . Однако облученные клетки на свету выживают гораздо лучше, чем в темноте. После тщательного анализа причин этого установлено, что в облученных клетках на свету происходит репарация (световая репарация). Она осуществляется специальным ферментом , активирующимся квантами видимого света. Фермент соединяется с поврежденной ДНК, разъединяет возникшие в димерах связи и восстанавливает целостность нити ДНК. Фотореактивирующий фермент не является видоспецифичным, в качестве фермента в нем имеется цианокобаламин (В12), поглощающий кванты видимого сета и передающий энергию молекуле фермента. Фермент фотореактивации соединяется с ДНК, поврежденной ультрафиолетовыми лучами, образуя стабильный комплекс. На ранних стадиях эволюции живых организмов, когда отсутствовал озоновый слой задерживающий большую часть потока губительных для организмов солнечных ультрафиолетовых лучей фотореактивация играла особенно важную роль. Позднее была обнаружена темновая репарация, т.е. свойство клеток ликвидировать повреждения в ДНК без участия видимого света. При световой репарации исправляются повреждения, возникшие только под действием ультрафиолетовых лучей, при темновой - повреждения, появившиеся под влиянием ионизирующей радиации химических веществ и других факторов. Темновая репарация обнаружена как у прокариот так и в клетках эукариот. Механизм терновой репарации ДНК отличается тем, что не только разрезаются димеры (как при световой), но и вырезаются большие участки молекулы ДНК (до несколько сотен нуклеотидов); видимо, могут удаляться целые гены, после чего происходит комплиментарный матичный синтез с помощью фермента ДНК – полимеразы. На основании одной из предложенных моделей установлено пять последовательных этапов темновой репарации: 1. «узнавание» повреждения ДНК эндонуклеазой. 2. Действие эндонуклеазы по разрезанию одной цепи молекулы ДНК вблизи повреждения. 3. «вырезание»поврежденного участка и расширение бреши эндонуклеазой. 4. Матричный синтез новой цепи (репаративная репликация). 5.соединение новообразованного участка с нитью ДНК под действием фермента полинуклеотидлигазы. Открытие процесса репарации показало, что на молекулярном уровне имеется предмутационный период, во время которого может произойти восстановление исходной нормальной структуры молекулы ДНК. Если бы не этот выработавшийся в ходе эволюции процесс, количество мутаций так бы возросло, что препятствовало бы поддержанию гомеостаза и наследственности живых организмов. Не все виды ДНК репарируются, часть их проявляется в виде мутаций. Если репарация не возникает, появляется мутация, что может повлечь гибель клетки. Способность клеток осуществлять эффективеую репарацию генетического материала может иметь в клеточных механизмах старения. ВОПРОС №21 21. Клеточный цикл. Основные события интерфазы. Клеточным циклом называют последовательность событий от образования клетки до ее деления или гибели. Клеточный цикл любой клетки состоит из 2 непрерывных по продолжительности периодов: митоза (или собственно деления) и интерфазы. Во время митоза (М-фаза) наследственный материал клетки делится строго пополам между двумя образующимися молодыми клетками. Интерфаза неоднородна по своим событиям и вне выделяют фазы G1, S, G2. Многие клетки сразу после образования подвергаются специализации и «выпадают» из клеточного цикла в фазу G0. Часть таких клеток (например эритроциты человека) до самой гибли остаются в этой фаз, а некоторые (гепатоциты) могут возвращаться в клеточный цикл. а) пресинтетический период: 1.накапление РНК и белков, необходимых для образования клеточных структур. 2.Активация синтеза белка 3.Усиленный рост клетки. 4. Восстановление интерфазной ультраструктуры клетки. Б)синтетический период: 1.репликация ДНК 2. генетический материал удвоен-2n4c 3.удваивается количество гистонов, образуется РНК. В)постсинтетический период: 1. Активизируется синтез РНК, тубулинов - белков микротрубочек 2.Интенсифицируются процессы образования АТФ. К концу периода G1 в цитоплазме клеток нарабатывается ASФ, который активируют начало репликации ДНК и исчезает к началу G2 периода. МСФ появляется в цитоплазме к началу митоза и его выработка контролируется белком циклином. ВОПРОС 22 22. Митоз: основные события цитоплазматического и хромосомного цикла. Митоз -сложное деление ядра клетки, биологическое значение которого заключается в точном идентичном распределении дочерних хромосом содержащейся в них генетической информации между ядрами дочерних клеток. Профаза: 1.конденсация хроматина 2.образование хромосом, состоящих из 2-х хроматид 3.деструктурирование ядрышка 4. расхождение центриолей к полюсам 5.образование веретена деления. Прометафаза: 1. Дефрагментация ядерной оболочки 2.рост микротрубочек веретена и их прикрепление к кинетохорам хромосом Метафаза: 1. Образование метафазной пластинки Анафаза: 1.движение сестринских хроматид к противоположным полюсам клетки |