Главная страница
Навигация по странице:

  • Вопрос 33. Гармональная регуляция уровня глюкозы в крови.Гипер и гипо гликемические гармоны.Глюкагон,кортизол,адреналин.

  • Вопрос 34.КОНЦ.глю в крови как интегральный показатель углев. Обмена в организме…

  • Вопрос 35.Нарушение углеводного обмена при сахарном диабете….

  • 85. ВИТАМИН B

  • 86. ВИТАМИН В

  • 87. ВИТАМИН В

  • 88. ВИТАМИН В

  • 89. ВИТАМИН В

  • 91. ВИТАМИН “А” ( ретинол, антиксерофтальмический)

  • 92. ВИТАМИН Д (холекальциферол, антирахитный)

  • 93. ВИТАМИН К (филлохинон).

  • 94. ВИТАМИН Е (токоферол, витамин размножения).

  • Основные этапы гормональной регуляции

  • Сигнальные молекулы Представители Основные продуценты

  • Пути передачи сигнала клетке

  • Вопрос Биологическая роль белков и пептидов. Простые и сложные белки. Первичная, вторичная структуры белка, химические связи их стабилизирующие. Особенности состава и структуры глобулярных и фибриллярных белков (кератин, коллаген, эластин)


    Скачать 3.84 Mb.
    НазваниеВопрос Биологическая роль белков и пептидов. Простые и сложные белки. Первичная, вторичная структуры белка, химические связи их стабилизирующие. Особенности состава и структуры глобулярных и фибриллярных белков (кератин, коллаген, эластин)
    Дата22.01.2020
    Размер3.84 Mb.
    Формат файлаdoc
    Имя файлаotvety_k_ekzamenu_biokhimia.doc
    ТипДокументы
    #105364
    страница7 из 8
    1   2   3   4   5   6   7   8

    Вопрос 32. Гор. регул. уровня глюкозы в крови.

    Гипер и гипоглик. Инсулин.....

    Гипогликемия - сопровождается уменьшением содерж. инсулина и снижением отношения инсулин -глюкагон. что приводит к ускорению липолиза жировой ткани.

    Гормоны ЖКТ - гастрин, секретин, энтероглюкагон.

    Гипергликемия -повыш. содер. глюкозы в крови.

    Инсулин - это белковый гормон, 51а аминокислота сост из 2х полипептидных ципей.

    - Снижается в бетта кл. поджелудочной железы и секретируется в кровь в ответ на повышение конц. глюкозы в крови.

    Инсулин стимулирует перемещение ГЛЮТ -4 и встраивание их в мембрану кл. Влияние инсулина на скорость синтеза гликогена в тк. осущ посредств. измен. активности гликогенсинтетазы и гликогенфосфорилазы - ключевых ферментов.

    Вопрос 33. Гармональная регуляция уровня глюкозы в крови.Гипер и гипо гликемические гармоны.Глюкагон,кортизол,адреналин.

    Гор регул. уровня глюк. в крови. Гипер и гипогликемические гормоны. Глюкагон, кортизол, адреналин, хим природа и место синтеза, тк-мишени, эффекты на углеводный обмен в тк-мишенях.

    Глюкагон связывается с рецептором на плазматической мембране и активируется при посредничестве G -белка аденилатциклазу, катализирует образование АМФ и АТФ. Далее в печени проис. активация гликогенфосфорилазы и ингибировние гликогенсинтетезы. Это приводит к высвобождению из гликогена глюкозо-1-фосфата, который прев. в глюкозо-6 -фосфат, под влиянием глюкозо-6 фосфотазы образуется свободная глюкоза, способная выйти из клетки в кровь.

    Адреналин: Стимулирует выделение глюкозы из печени в кровь чтобы снабдить тк. "топливом" в экстрим. ситуации. Эффект адреналина в печени обусловлен фосфорилированиемгликогенфосфорилазы.

    Система передачи сигнала в кл. зависит от типа рецептора, с которым взаимодейст адреналин.

    Пример: Взаимодействие адрен. с бетта 2 -рецептором кл. печени приводит в действие аденилатциклазную систему. А с альфа1 -рец включает инозитолфосфатный механизм трансмемб. передачи гормонального сигнала.

    Результат действия обоих систем фосфорилирование ключевых ферментов и переключ. прод. синтеза гликогена и его распад.

    Кортизол - синтезируется из холестерола, который поступает из крови в составе ЛПНП или синтезируется в клет.из АЦЕТИЛ-КоА.

    Скорость синтеза и секреции кортизола стимулируется в ответ на стресс "травму" повышение к-ции кортизола подавляет синтез кортиколиберина и АКТГ по мех. отриц. обратной связи.

    Вопрос 34.КОНЦ.глю в крови как интегральный показатель углев. Обмена в организме…

    К-ция глюкозы крови как интегральный показатель углеодного обмена в организме. Глюкозо - 6 фосфат центральный метаболит внутркл. обмена глюк. возможные причины гипер и гипогликемии.

    Конц. глюкозы в артери крови на постоянном уровне 60-100 мг/л (3,3 - 5,5 ммоль/л)

    после приема углеводов уровень глюкозы возрастает в течении примерно 1го часа до 150 мг/дл(8 ммоль/л) затем возвр к норме.

    Гипергликемия - скрытая форма сах диабета к-ция глюкозы натощак соотв норме.

    Вопрос 35.Нарушение углеводного обмена при сахарном диабете….

    Глю. способна неферментативно связывться с лизином белков крови и тк.(неэнзим гликозил) нарушая их структуру и функцию.

    Эти измен. белки восприн как чужеродные с активацией имунных реакций, направленных на их уничтожение что приводит к развит патологич реакций.

    84. В И Т А М И Н Ы

    Витамины - это низкомолекулярные органические вещества разнообразного строения. Объединены в одну группу по следующим признакам:

    1. Витамины абсолютно необходимы организму и в очень небольших количествах.

    2. Витамины не синтезируются в организме и должны поступать извне или синтезироваться микрофлорой кишечника.

    Витамины играют одинаковую роль во всех формах жизни, но высшие животные утратили способность к их синтезу. Например, аскорбиновая кислота (витамин ”С”) не синтезируется в организмах человека, обезьян и морской свинки, так как в процессе эволюции была утеряна ферментная система синтеза этого витамина из глюкозы. .

    КЛАССИФИКАЦИЯ ВИТАМИНОВ

    1. Водорастворимые витамины. К этой группе относят витамины С, Р, В1, В2, В3, ВC, В6, В12, РР, Н.

    2. Жирорастворимые витамины: А, Д, Е, К.

    ОСОБЕННОСТИ ФУНКЦИОНИРОВАНИЯ

    Большинство водорастворимых витаминов должно поступать регулярно с пищей, т.к. они быстро выводятся или разрушаются в организме. Жирорастворимые витамины могут депонироваться в организме. Кроме того, они плохо выводятся, поэтому иногда при избытке жирорастворимых витаминов наблюдаются гиповитаминозы.

    АВИТАМИНОЗ - это заболевание, которое развивается при полном отсутствии того или иного витамина в организме. В настоящее время авитаминозы обычно не встречаются, а бывают ГИПОВИТАМИНОЗЫ при недостатке витамина в организме

    ПРИЧИНЫ РАЗВИТИЯ ГИПО- И АВИТАМИНОЗОВ

    Все причины можно разделить на внешние и внутренние.

    ВНЕШНИЕ причины гиповитаминозов:

    1. Недостаточное содержание витамина в пище (при неправильной обработке пищи, при неправильном хранении пищевых продуктов)

    2. Состав рациона питания (например, отсутствие в рационе овощей и фруктов)

    3. Не учитывается потребность в том или ином витамине. Например, при белковой диете возрастает потребность в витамине “РР” (при обычном питании он может частично синтезироваться из триптофана). Если человек потребляет много белковой пищи, то может увеличиться потребность в витамине “В6“ и снизиться потребность в витамине РР.

    4. Социальные причины: урбанизация населения, питание исключительно высокоочищенной и консервированной пищей; наличие антивитаминов в пище. Социальные причины развития авитаминозов существуют в мире. Например, в отдаленных районах Севера, в рационе людей мало овощей и фруктов. Урбанизация также имеет значение, т.к. в пищу потребляется много консервированных и рафинированнных продуктов. В крупных городах люди недостаточно обеспечены солнечным светом - поэтому может быть гиповитаминоз Д.

    ВНУТРЕННИЕ причины гиповитаминозов:

    1. Физиологическая повышенная потребность в витаминах, например, в период беременности, при тяжелом физическом труде.

    2. Длительные тяжелые инфекционные заболевания, а также период выздоровления;

    3. Нарушение всасывания витаминов при некоторых заболеваниях ЖКТ, например, при желчнокаменной болезни нарушается всасывание жирорастворимых витаминов;

    4. Дисбактериоз кишечника. Имеет значение, так как некоторые витамины синтезируются полностью микрофлорой кишечника (это витамины В3, Вc, В6, Н, В12 и К);

    5. Генетические дефекты некоторых ферментативных систем. Например, витамин Д-резистентный рахит развивается у детей при недостатке ферментов, участвующих в образовании активной формы витамина Д (1,25-диоксихолекальциферола).
    85. ВИТАМИН B1 (тиамин, антиневритный)

    Производное вит.В1 - ТДФ (ТПФ) является коферментом пируватдегидрогеназного комплекса (фермента пируваткарбоксилазы), альфа-кетоглутаратдегидрогеназного комплекса и фермента транскетолазы (фермента альфа-тотаратдекарбоксилазы), а также входит в состав кофермента транскетолаз - ферментов неокислительного этапа ГМФ-пути..

    При недостаточности вит.В1 может возникнуть болезнь "бери-бери", характерная для тех стран Востока, где основным продуктом питания служит очищенный рис и кукуруза. Для этого заболевания характерна мышечная слабость, нарушение моторики кишечника, потеря аппетита, истощение, периферический неврит (характерный признак - человеку больно вставать на стопу - больные ходят “на цыпочках”), спутанность сознания, нарушения работы сердечно-сосудистой системы. При "бери-бери" повышается содержание пирувата в крови.

    Пищевые источники витамина В1 - ржаной хлеб. В кукурузе, рисе, пшеничном хлебе витамин В1 практически отсутствует. Это объясняется тем, что в зерне ржи тиамин распределен по всему зерну, а в других злаках он содержится только в оболочке зерен.Суточная потребность - 1.5 мг/сутки.
    86. ВИТАМИН В2 (рибофлавин)

    Витамин В2 входит в состав флавинмононуклеотида (ФМН) и флавинадениндинуклеотида (ФАД) - простетических групп флавиновых ферментов.

    Его биологическая функция в организме - участие в окислительно-восстановительных реакциях в составе флавопротеидов (ФП).

    Недостаточность этого витамина часто встречается в России. Особенно часто бывает у людей, которые не употребляют в пищу черный ржаной хлеб. Проявление гиповитаминоза: ангулярные дерматиты в углах рта (“заеда”), глаз. Часто это сопровождается кератитами (воспаление роговицы). В очень тяжелых случаях бывает анемия. Очень часто сочетаются сочетанные гиповитаминозы витаминов "В2" и "РР",так как эти витамины содержатся в одних и тех же продуктах.

    Пищевые источники: ржаной хлеб, молоко, печень, яйца, овощи желтого цвета, дрожжи. Суточная потребность: 2-4 мг/сутки.
    87. ВИТАМИН В3 (пантотеновая кислота)

    Молекула пантотеновой кислоты состоит из бета-аланина и 2,4-дигидрокси-диметил-масляной кислоты. Формулу знать необязательно.

    Важность этого витамина в том, что он входит в состав HS-KoA (кофермента ацилирования).

    Строение КоА: а) тиоэтиламин б) пантотеновая кислота в) 3-фосфоаденозин-5-дифосфат.

    HSКоА - кофермент ацилирования, то есть входит в состав ферментов, которые катализируют перенос ацильных остатков. Поэтому В3 участвует в бета-окислении жирных кислот, окислительном декарбоксилировании альфа-кетокислот, биосинтезе нейтрального жира, липоидов, стероидов, гема, ацетилхолина.

    При недостатке пантотеновой кислоты при дисбактериозе у человека развиваются дерматиты, в тяжелых случаях - изменения со стороны желез внутренней секреции, в том числе надпочечников. Также наблюдается депигментация волос, истощение.

    Пищевые источники: яичный желток, печень, дрожжи, мясо, молоко.

    Суточная потребность: 10мг/сут.
    88. ВИТАМИН В5 (никотинамид)

    Входит в состав НАД и НАДФ, то есть входит в состав коферментов никотинамидных дегидрогеназ.

    Его роль - участие в окислительно-восстановительных реакциях. При недостатке РР развивается пеллагра. При пеллагре наблюдаются три “Д”:- дерматит- диарея - деменция (поражение центральной нервной системы)

    Источники РР: мясо, бобовые, орехи, рыба и вообще продукты, богатые белком.

    Витамин РР может частично синтезироваться из триптофана.

    Если человек съедает много белковой пищи, то потребность в этом витамине снижается. Из 60 гр. белка может синтезироваться 1 мг витамина РР.

    Суточная потребность: 15-25 мг/сутки.
    89. ВИТАМИН В6 (пиридоксин).

    В6 в форме пиридоксальфосфата является простетической группой трансаминаз и декарбоксилаз аминокислот. Он необходим и для некоторых реакций обмена аминокислот. Поэтому при авитаминозе В6 наблюдаются нарушения обмена аминокислот.В6 также участвует в реакциях синтеза гема гемоглобина (синтез d-аминолевулиновой кислоты). Поэтому при недостатке В6 у человека развивается анемия.

    Кроме анемии, наблюдаются дерматиты. Недостаток В6 может развиться у больных туберкулезом, потому что этих больных лечат препаратами, синтезированными на основе изониазида - это антагонисты витамина В6.

    Пищевые источники: ржаной хлеб, горох, картофель, мясо, печень, почки.

    Суточная потребность взрослого человека: 0.15-0.20 мг.
    90. ВИТАМИН “С” (аскорбиновая кислота, антицинготный, антискорбутный).

    В 1932 г. впервые выделен из сока лимона, через два года искусственно синтезирован. Важное свойство - способность аскорбиновой кислоты легко окисляться.

    Биологическая роль витамина “С” (связана с его участием в окислительно-восстановительных реакциях)

    1. Витамин С, являясь сильным восстановителем, играет роль кофактора в реакциях окислительного гидроксилирования, что необходимо для окисления аминокислот пролина и лизина в оксипролин и в оксилизин в процессе биосинтеза коллагена. Коллаген может синтезироваться и без участия витамина С, но такой коллаген не является полноценным (не формирутся его нормальная структура). Поэтому при недостатке витамина С ткани, содержащие много коллагена, становятся непрочными, ломкими. В первую очередь нарушается структура стенок сосудов, повышается их проницаемость, наблюдаются кровоизлияния под кожу и под слизистые оболочки.

    2. Участвует в синтезе стероидных гормонов надпочечников.

    3. Необходим для всасывания железа.

    4. Участвует в неспецифической иммунной защите организма.

    Авитаминоз “С” - цинга. Проявления цинги: болезненность, рыхлость и кровоточивость десен, расшатывание зубов, нарушение целостности капилляров - подкожные кровоизлияния , отечность и болезненность суставов, нарушение заживления ран, анемия. Иногда цинга развивается у новорожденных на искусственном вскармливании пастеризованным молоком, в которое не добавлен витамин С. В основе всех изменений при цинге, за исключением анемии, лежит нарушение синтеза коллагена. Анемия связана с нарушением всасывания железа.

    В настоящее время цинга не распространена, но весной у многих людей наблюдается недостаток (гиповитаминоз) витамина “С”, что проявляется, например, повышенной утомляемостью, понижением иммунитета.

    Основные источники витамина “С”: свежие зеленые овощи и фрукты.

    Следует помнить, что витамин С легко разрушается при нагревании, особенно в щелочной среде в присутствии кислорода, ионов железа и меди. Хорошо сохраняется в кислой среде (в квашеной капусте, в клюкве, в ягодах черной смородины и плодах шиповника). При длительном хранении овощей и фруктов содержание в них витамина “С” уменьшается.

    Источником витамина С является также хвоя ели и сосны.

    Суточная потребность - около 100 мг в сутки.

    Лечебная доза - до 1-2 г в сутки
    91. ВИТАМИН “А” ( ретинол, антиксерофтальмический)

    Необходимо знать формулу витамина А.

    Наиболее ранний и специфический признак гиповитаминоза А - гемералопия ("куриная слепота") - нарушение сумеречного зрения. Возникает из-за недостатка зрительного пигмента - родопсина. Родопсин содержит в качестве активной группы ретиналь (альдегид витамина А) - находится в палочках сетчатки. Эти клетки (палочки) воспринимают световые сигналы низкой интенсивности. РОДОПСИН = опсин (белок) + цис-ретиналь.

    При возбуждении родопсина светом, цис-ретиналь, в результате ферментативных перестроек внутри молекулы переходит в полностью-транс-ретиналь (на свету). Это приводит к конформационной перестройке всей молекулы родопсина. Родопсин диссоциирует на опсин и транс-ретиналь, что является пусковым механизмом, возбуждающим в окончаниях зрительного нерва импульс, который затем передается в мозг.

    В темноте, в результате ферментативных реакций транс-ретиналь вновь превращается в цис-ретиналь и, соединяясь с опсином, образует родопсин.

    Витамин А также влияет на процессы роста и развития покровного эпителия. Поэтому при авитаминозе наблюдается поражение кожи, слизистых оболочек и глаз, которое проявляется в патологическом ороговении кожи и слизистых. У больных развивается ксерофтальмия - сухость роговой оболочки глаза, т.к. происходит закупорка слезного канала в результате ороговения эпителия. Так как глаз перестает омываться слезой, которая обладает бактерицидным действием, развиваются конъюнктивиты, изъязвление и размягчение роговицы -кератомаляция. При авитаминозе А может быть также поражение слизистой ЖКТ, дыхательных и мочеполовых путей. Нарушается устойчивость всех тканей к инфекциям. При развитии авитаминоза в детстве - задержка роста.

    В настоящее время показано участие витамина А в защите мембран клеток от окислителей - т.е. витамин А обладает антиоксидантной функцией.

    Витамин А запасается в печени.

    Пищевые источники - печень морских рыб и млекопитающих, желток яиц, цельное молоко, рыбий жир. Овощи и фрукты красно-оранжевого цвета (томаты, морковь и др.) содержат много каротина - водорастворимого предшественника витамина А, имеющего в молекуле 2 иононовых кольца.

    В настоящее время, гиповитаминоз А наблюдается у людей с заболеваниями кишечника, поджелудочной железы, при нарушении желчевыделительной функции печени, то есть при заболеваниях, при которых нарушается всасывание жира. Высокие дозы витамина А могут приводить к токсическим эффектам. Характерные проявления гипервитаминоза - воспаление глаз, гиперкератоз, выпадение волос, диспептические явления.

    Суточная потребность в витамине А - 1-2.5 мг, в каротине - в 2 раза больше.
    92. ВИТАМИН Д (холекальциферол, антирахитный)

    Сам витамин Д не обладает витаминной активностью, но он служит предшественником 1,25-дигидрокси-холекальциферола (1,25-дигидроксивитамина Д3).

    Синтез активной формы протекает в два этапа - в печени присоединяется оксигруппа в положении 25, а затем в почках - оксигруппа в положении 1. Из почек активный витамин Д3 переносится в другие органы и ткани - главным образом в тонкий кишечник и в кости, где витамин Д участвует в регуляции обмена Са и Р. Недостаток витамина Д приводит к развитию нарушений фосфорно-кальциевого обмена и процессов окостенения. В результате у детей развивается рахит, связанный с недостатком Са и Р. Характерные признаки рахита - остеомаляция ("размягчение" костей - запаздывание окостенения), запаздывание закрытия родничков, деформации грудной клетки, позвоночника, конечностей. У таких детей снижен мышечный тонус, наблюдается раздражительность, потливость, выпадение волос.

    У взрослых при недостатке витамина Д наблюдается остеопороз - разрежение костной ткани в результате вымывания солей кальция из скелета.

    Потребность в витамине Д повышается у беременных.

    При благоприятных условиях витамин Д может синтезироваться в организме человека из предшественника - 7-дегидрохолестерина под действием ультрафиолетовых лучей (фотохимическая реакция) в результате разрыва связи в кольце В.

    Пищевые источники - рыба, рыбий жир, печень, сливочное масло, желток яиц.

    Суточная доза витамина Д3 - 10-20 мкг. Высокие дозы витамина Д (выше 1,5 мг в сутки) крайне токсичны. При гипервитаминозе кроме интоксикации наблюдается отложение гидроксиапатита в некоторых внутренних органах (кальцификация почек, кровеносных сосудов).
    93. ВИТАМИН К (филлохинон).

    Витамин К необходим для нормального синтеза протромбина (фактор II) - предшественника одного из белков системы свертывания - тромбина. Тромбин - это фермент, который катализирует реакцию превращения фибриногена в фибрин - основу кровяного сгустка при активации системы светрывания крови.

    При недостатке витамина К синтезируется дефектная молекула протромбина и ряда других факторов свертывания крови. Причина - нарушение ферментативного карбоксилирования глутаминовой кислоты, необходимой для связывания Са2+ белками системы свертывания. Основное проявление недостаточности - нарушение свертывания крови, в результате которого происходят самопроизвольные паренхиматозные и капиллярные кровотечения.

    Авитаминоз, как правило связан с нарушением выделения желчи в ЖКТ (при желчнокаменной болезни).

    Пищевые источники - ягоды рябины, капуста, арахисовое масло и др. растительные масла. Витамин К также синтезируется микрофлорой кишечника, поэтому одна из причин гиповитаминозов при недостатке витамина в пище - дизбактериоз кишечника (например, при антибиотикотерапии).

    Если больной страдает гиповитаминозом К, например, при некоторых видах желтух, то операции - даже удаление зуба - могут сопровождаться длительным кровотечением.

    Синтезирован водорастворимый аналог витамина К - викасол, который используют при лечении гиповитаминозов, связанных с нарушением всасывания витамина К из кишечника.

    Известны природные антивитамины К - например, ДИКУМАРИН, САЛИЦИЛОВАЯ кислота, которые применяют при лечении тромбозов, т.к. антивитамины К способны снижать количество протромбина в крови.

    Суточная потребность точно не установлена, т.к. витамин синтезируется микрофлорой. Считают, что в сутки потребность около 1 мг.
    94. ВИТАМИН Е (токоферол, витамин размножения).

    Является антиоксидантом. При недостаточности витамина Е - дегенеративные изменения в печени, нарушение функций биологических мембран. Витамин Е предохраняет липиды клеточных мембран от окисления активными формами кислорода. Авитаминоз проявляется при очень длительном голодании или при стойком нарушении желчевыделительной функции печени (нарушение всасывания жиров). При этом наблюдаются шелушение кожи, мышечная слабость, стерильность - нарушением функции размножения. Поскольку витамин Е широко распространен в природе (растительные масла, семена пшеницы и др. злаков, сливочное масло), то авитаминоз встречается редко.Суточная потребность - около 10-30 мг.

    95.

    Клетки-мишени – это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.

    Основные этапы гормональной регуляции:

    Синтез сигнальной молекулы→ Транспорт сигнальной молекулы→ Связывание сигнальной молекулы с рецептором клетки-мишени→ Связывание сигнальной молекулы с рецептором клетки-мишени→ Активация (ингибирование) внутриклеточной молекулы-эффектора→ Изменение метаболизма клетки-мишени/ Инактивация сигнальной молекулы

    Сигнальные молекулы

    Представители


    Основные

    продуценты

    Путь передачи сигнала

    Микромолекулы

    Супероксидный радикал, оксид азота

    Клетки эпителия,

    эндотелия

    АК

    ПК

    Эйкозаноиды


    Простагландины, тромбоксаны, лейкотриены

    Лейкоциты, тромбоциты и др.


    ПК


    Цитокины:





    факторы роста


    Васкулярный эндотелиальный фактор роста (VEGF) и др.

    Многие клетки


    АК

    ПК

    ЭК

    интерлейкины

    Интерлейкины 1-18

    Лейко-циты

    АК,ПК,ЭК

    хемокины


    Адгезивные молекулы (RANTES и др.)

    Клетки эпителия, эндотелия и др.

    ПК


    факторы роста и некроза опухолей

    Фактор некроза опухолей альфа

    Лейкоциты


    ПК

    ЭК

    колониестимулирующие факторы

    Моноцитколониестимулирующий фактор и др.

    Лейкоциты


    ПК

    Гисто-гормоны

    Гистамин, серотонин, гастрин, натрийуретический пептид и др.

    Эндокринные клетки в разных тканях


    ПК


    Гормоны

    инсулин, катехоламины, тироксин, половые гормоны, глюкокортикоиды

    Эндокринные железы


    ЭК


    96.

    три системы:

    -аутокринная регуляция (саморегуляция биохимических процессов в клетки методами обратной связи, субстратной индукцией, а также с помощью свободно-радикальных метаболитов, супероксида и оксида азота)

    -паракринная регуляция (тканевые гормоны, нейромедиаторы)

    -эндокринная регуляция (истинные гормоны)

    Пути передачи сигнала клетке
    Клетка-мишень



    Рецептор

    Сигнальная молекула

    Клетка-продуцент сигнальной молекулы


    101.

    В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране.

    Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют "ВТОРЫМИ ПОСРЕДНИКАМИ". Молекулы гормонов очень разнообразны по форме, а "вторые посредники" - нет.

    Надёжность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

    Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов? Это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок - кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы - ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях.

    Разберем более подробно механизмы действия гормонов и внутриклеточных посредников. Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия:

    1. АДЕНИЛАТЦИКЛАЗНАЯ (ИЛИ ГУАНИЛАТЦИКЛАЗНАЯ) СИСТЕМЫ

    2. ФОСФОИНОЗИТИДНЫЙ МЕХАНИЗМ

    АДЕНИЛАТЦИКЛАЗНАЯ СИСТЕМА.

    Основные компоненты: мембранный белок-рецептор, G-белок, фермент аденилатциклаза, гуанозинтрифосфат, протеинкиназы.

    Кроме того, для нормального функционирования аденилатциклазной системы, требуется АТФ.

    Схема аденилатциклазной системы представлена на рисунке:



    Как видно из рисунка, белок-рецептор, G-белок, рядом с которым располагаются ГТФ и фермент (аденилатциклаза) встроены в мембрану клетки.

    До момента действия гормона эти компоненты находятся в диссоциированнном состоянии, а после образования комплекса сигнальной молекулы с белком-рецептором происходят изменения конформации G-белка. В результате одна из субъединиц G-белка приобретает способность связываться с ГТФ.

    Комплекс “G-белок-ГТФ” активирует аденилатциклазу. Аденилатциклаза начинает активно превращать молекулы АТФ в ц-АМФ.

    ц-АМФ обладает способностью активировать особые ферменты - протеинкиназы, которые катализируют реакции фосфорилирования различных белков с участием АТФ. При этом в состав белковых молекул включаются остатки фосфорной кислоты. Главным результатом этого процесса фосфорилирования является изменение активности фосфорилированного белка. В различных типах клеток фосфорилированию в результате активации аденилат-циклазной системы подвергаются белки с разной функциональной активностью. Например, это могут быть ферменты, ядерные белки, мембранные белки. В результате реакции фосфорилирования белки могут становятся функционально активными или неактивными.

    Такие процессы будут приводить к изменениям скорости биохимических процессов в клетке-мишени.

    Активация аденилатциклазной систтемы длится очень короткое время, потому что G-белок после связывания с аденилатциклазой начинает проявлять ГТФ-азную активность. После гидролиза ГТФ G-белок восстанавливает свою конформацию и перестает активировать аденилатциклазу. В результате прекращается реакция образования цАМФ.

    Кроме участников аденилатциклазной системы в некоторых клетках-мишенях имеются белки-рецепторы, связанные с G-белками, которые приводят к торможению аденилатциклазы. При этом комплекс “GTP-G-белок” ингибирует аденилатциклазу.

    Когда останавливается образование цАМФ, реакции фосфорилирования в клетке прекращаются не сразу: пока продолжают существовать молекулы цАМФ - будет продолжаться и процесс активации протеинкиназ. Для того, чтобы прекратить действие цАМФ, в клетках существует специальный фермент - фосфодиэстераза, который катализирует реакцию гидролиза 3',5'-цикло-АМФ до АМФ.

    Некоторые вещества, обладающие ингибирующим действием на фосфодиэстеразу, (например, алкалоиды кофеин, теофиллин), способствуют сохранению и увеличению концентрации цикло-АМФ в клетке. Под действием этих веществ в организме продолжительность активации аденилатциклазной системы становится больше, то есть усиливается действие гормона.

    102.

    В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране.

    Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют "ВТОРЫМИ ПОСРЕДНИКАМИ". Молекулы гормонов очень разнообразны по форме, а "вторые посредники" - нет.

    Надёжность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

    Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов? Это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок - кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы - ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях.

    Разберем более подробно механизмы действия гормонов и внутриклеточных посредников. Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия:

    1. АДЕНИЛАТЦИКЛАЗНАЯ (ИЛИ ГУАНИЛАТЦИКЛАЗНАЯ) СИСТЕМЫ

    2. ФОСФОИНОЗИТИДНЫЙ МЕХАНИЗМ

    Инозитолтрифосфат -это вещество, которое является производным сложного липида - инозитфосфатида. Оно образуется в результате действия специального фермента - фосфолипазы “С”, который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

    Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.



    Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки. Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы. И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.

    В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок - кальмодулин. Это низкомолекулярный белок (17 кДа), на 30% состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2. Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс “Са+2-кальмодулин” становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты - аденилатциклазу, фосфодиэстеразу, Са+2,Мg+2-АТФазу и различные протеинкиназы.

    В разных клетках при воздействии комплекса “Са+2-кальмодулин” на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других - ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться.

    Таким образом, в роли "вторых посредников" для передачи сигналов от гормонов в клетках-мишенях могут быть:

    - Циклические нуклеотиды (ц-АМФ и ц-ГМФ);

    - Ионы Са;

    - Комплекс “Са-кальмодулин”;

    - Диацилглицерин;

    - Инозитолтрифосфат

    106.

    ИНСУЛИН

    Основные механизмы действия инсулина:

    1. Инсулин повышает проницаемость плазматических мембран для глюкозы. Этот эффект инсулина является главным лимитирующим звеном метаболизма углеводов в клетках.

    2. Инсулин снимает тормозящее действие глюкокортикостероидов на гексокиназу.

    3. На генетическом уровне инсулин стимулирует биосинтез ферментов метаболизма углеводов, в том числе ключевых ферментов.

    4. Инсулин в клетках жировой ткани ингибирует триглицеридлипазу - ключевой фермент распада жиров.

    Регуляция секреции инсулина в кровь происходит с участием нейро-рефлекторных механизмов. В стенках кровеносных сосудов есть особые хеморецепторы, чувствительные к глюкозе. Повышение концентрации глюкозы в крови вызывает рефлекторную секркцию инсулина в кровь, глюкоза проникает в клетки и ее концентрация в крови снижается.

    Остальные гормоны вызывают повышение концентрации глюкозы в крови.

    Действие ИНСУЛИНА связано с повышением активности внутриклеточной фосфодиэстеразы, что приводит к снижению концентрации цАМФ и угнетению липолиза. Таким образом, инсулин усиливает синтез жира и уменьшает скорость его мобилизации.
    ГЛЮКАГОН.

    Относится к белково-пептидным гормонам. Обладает мембранным типом взаимодействия с клеткой-мишенью. Эффект оказывает через аденилатциклазную систему.

    1. Вызывает повышение активности гликоген-фосфорилазы. В результате ускоряется распад гликогена. Так как глюкагон оказывает эффект только в печени то можно сказать, что он "гонит глюкозу из печени".

    2. Понижает активность гликоген-синтетазы, замедляя синтез гликогена.

    3. Активирует липазу в жировых депо.
    107.

    ГЛЮКОКОРТИКОСТЕРОИДЫ (ГКС).

    Относятся к стероидным гормонам, поэтому обладают внутриклеточным типом взаимодействия с клеткой-мишенью. Проникая в клетку-мишень, они взаимодействуют с клеточным рецептором и обладают следующими эффектами:

    1. Ингибируют гексокиназу - таким образом они замедляют утилизацию глюкозы. В результате концентрация глюкозы в крови возрастает.

    2. Данные гормоны обеспечивают процесс гликонеогенеза субстратами.

    3. На генетическом уровне усиливают биосинтез ферментов катаболизма белков

    108.

    ЙОДСОДЕРЖАЩИЕ ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ.

    Трииодтиронин (Т3)

    Тироксин (Т4)

    Это гормоны - производные аминокислоты тирозина. Обладают внутриклеточным типом взаимодействия с клетками-мишенями. Рецептор Т3/Т4 находится в ядре клетки. Поэтому эти гормоны усиливают биосинтез белков на уровне транскрипции. Среди этих белков - окислительные ферменты, в частности разнообразные дегидрогеназы. Кроме того, они стимулируют синтез АТФаз, т.е. ферментов, которые разрушают АТФ. Для процессов биоокисления требуются субстраты - продукты окисления углеводов и жиров. Поэтому при увеличении продукции этих гормонов наблюдается усиление распада углеводов и жиров. Гиперфункция щитовидной железы называется Базедова болезнь или тиреотоксикоз. Один из симптомов этого заболевания - понижение массы тела. Для этого заболевания характерно повышение температуры тела. В опытах in vitro наблюдается разобщение митохондриального окисления и окислительного фосфорилирования при высоких дозах этих гормонов.

    110.

    СОСТАВ И СТРОЕНИЕ СОЕДИНИТЕЛЬНОЙ ТКАНИ

    В соединительной ткани различают: МЕЖКЛЕТОЧНОЕ (ОСНОВНОЕ) ВЕЩЕСТВО, КЛЕТОЧНЫЕ ЭЛЕМЕНТЫ, ВОЛОКНИСТЫЕ СТРУКТУРЫ (коллагеновые волокна). Особенность: межклеточного вещества гораздо больше, чем клеточных элементов.

    МЕЖКЛЕТОЧНОЕ (ОСНОВНОЕ) ВЕЩЕСТВО

    Желеобразная консистенция основного вещества объясняется его составом. Основное вещество - это сильно гидратированный гель, который образован высокомолекулярными соединениями, составляющими до 30% массы межклеточного вещества. Оставшиеся 70% - это вода. Высокомолекулярные компоненты представлены белками и углеводами. Углеводы по своему строению являются гетерополисахаридами -

    Длинные полисахаридные цепи складываются в глобулы. Однако эти глобулы рыхлые (не имеют компактной укладки) и занимают сравнительно большой объем. ГАГ являются гидрофильными соединениями, содержат много гидроксильных групп, имеют значительный отрицательный заряд (много карбоксильных и сульфогрупп). Значительный отрицательный заряд способствует присоединению к ним положительно заряженных катионов калия, натрия, кальция, магния. Это еще более увеличивает способность удерживать воду, а также способствует диссоциации молекул этих веществ в соединительной ткани.

    КЛЕТОЧНЫЕ ЭЛЕМЕНТЫ СОЕДИНИТЕЛЬНОЙ ТКАНИ.

    Это ФИБРОБЛАСТЫ, ТУЧНЫЕ КЛЕТКИ и МАКРОФАГИ. В них происходят процессы синтеза структурных компонентов, а также процесс распада соединительной ткани. Коллаген обновляется на 50% за 10 лет. В фибробластах идут синтетические процессы: синтез коллагена, эластина.

    В межклеточном матриксе находятся 2 типа волокнистых структур: КОЛЛАГЕНОВЫЕ и ЭЛАСТИНОВЫЕ ВОЛОКНА. Основным их компонентом является нерастворимый белок

    КОЛЛАГЕН - сложный белок, относится к группе гликопротеинов, имеет четвертичную структуру, его молекулярная масса составляет 300 kDa. Составляет 30% от общего количества белка в организме человека. Его фибриллярная структура - это суперспираль, состоящая из 3-х альфа-цепей. Нерастворим в воде, солевых растворах, в слабых растворах кислот и щелочей. Это связано с особенностями первичной структуры коллагена. В коллагене 70% аминокислот являются гидрофобными. Аминокислоты по длине полипептидной цепи расположены группами (триадами), сходными друг с другом по строению, состоящими из трех аминокислот. Каждая третья аминокислота в первичной структуре коллагена - это глицин (триада (или группа): (гли-X-Y)n, где X - любая аминокислота или оксипролин, Y - любая аминокислота или оксипролин или оксилизин). Эти аминокислотные группы в полипептидной цепи многократно повторяются. Необычна и вторичная структура коллагена: шаг одного витка спирали составляют только 3 аминокислоты (даже немного меньше, чем 3), а не 3.6 аминокислоты на 1 виток, как это наблюдается у других белков. Такая плотная упаковка спирали объясняется присутствием глицина. Эта особенность определяет высшие структуры коллагена. Молекула коллагена построена из 3-х цепей и представляет собой тройную спираль. Эта тройная спираль состоит из 2-х альфа-1-цепей и одной альфа-2-цепи. В каждой цепи 1.000 аминокислотных остатков. Цепи параллельны и имеют необычную укладку в пространстве: снаружи расположены все радикалы гидрофобных аминокислот. Известно несколько типов коллагена, различающихся генетически.

    ЭЛАСТИЧЕСКИЕ ВОЛОКНА

    2-й вид волокон - эластические. В основе строения - белок ЭЛАСТИН. Эластин еще более гидрофобен, чем коллаген. В нем до 90% гидрофобных аминокислот. Много лизина, есть участки со строго определенной последовательностью расположения аминокислот. Цепи укладываются в пространстве в виде глобул. Глобула из одной полипептидной цепи называется альфа-эластин. За счет остатков лизина происходит взаимодействие между молекулами альфа-эластина.

    В образовании этой структуры принимают участие радикалы аминокислоты лизина. Это структура ДЕСМОЗИНА. ДЕСМОЗИН - это структура пиридина, которая образуется при взаимодействии лизина 4-х молекул альфа-эластина.

    111.

    СИНТЕЗ КОЛЛАГЕНА

    Существуют 8 этапов биосинтеза коллагена: 5 внутриклеточных и 3 внеклеточных.

    1-Й ЭТАП Протекает на рибосомах, синтезируется молекула-предшественник: препроколлаген.

    2-Й ЭТАП С помощью сигнального пептида “пре” транспорт молекулы в канальцы эндоплазматической сети. Здесь отщепляется “пре” - образуется “проколлаген”.

    3- Й ЭТАП Аминокислотные остатки лизина и пролина в составе молекулы коллагена подвергаются окислению под действием ферментов пролилгидроксилазы и лизилгидроксилазы (эти окислительные ферменты относятся к подподклассу монооксигеназ) (смотрите рисунок).

    При недостатке витамина “С” - аскорбиновой кислоты наблюдается цинга, - заболевание, вызванное синтезом дефектного коллагена с пониженной механической прочностью, что вызывает, в частности, разрыхление сосудистой стенки и другие неблагоприятные явления.

    4-Й ЭТАП Посттрасляционная модификация - гликозилирование проколлагена под действием фермента гликозил трансферазы. Этот фермент переносит глюкозу или галактозу на гидроксильные группы оксилизина.

    5-Й ЭТАП Заключительный внутриклеточный этап - идет формирование тройной спирали - тропоколлагена (растворимый коллаген). В составе про-последовательности - аминокислота цистеин, который образует дисульфидные связи между цепями. Идет процесс спирализации.

    6-Й ЭТАП Секретируется тропоколлаген во внеклеточную среду, где амино- и карбоксипротеиназы отщепляют (про-)-последовательность.

    7-Й ЭТАП Ковалентное “сшивание” молекулы тропоколлагена по принципу “конец-в-конец” с образованием нерастворимого коллагена. В этом процессе принимает участие фермент лизилоксидаза (флавометаллопротеин, содержит ФАД и Cu). Происходит окисление и дезаминирование радикала лизина с образованием альдегидной группы. Затем между двумя радикалами лизина возникает альдегидная связь.

    Только после многократного сшивания фибрилл коллаген приобретает свою уникальную прочность, становится нерастяжимым волокном.

    Лизилоксидаза является Cu-зависимым ферментом, поэтому при недостатке меди в организме происходит уменьшение прочности соединительной ткани из-за значительного повышения количества растворимого коллагена (тропоколлагена).

    8-Й ЭТАП Ассоциация молекул нерастворимого коллагена по принципу “бок-в-бок”. Ассоциация фибрилл происходит таким образом, что каждая последующая цепочка сдвинута на 1/4 своей длины относительно предыдущей цепи.

    112.

    Костная ткань - это особый вид соединительной ткани. Костная ткань имеет особенности строения, которые не встречаются в других видах соединительной ткани. В ней преобладает межклеточное вещество, содержащее большое количество минеральных компонентов, главным образом - солей кальция. Основные особенности кости - твердость, упругость, механическая прочность.

    В компактном веществе кости большая часть минеральных веществ представлена гидроксилапатитом (смотрите рисунок) и аморфным фосфатом кальция. Кроме них встречаются карбонаты, фториды, гидроксиды и значительное количество цитрата. Химический состав костной ткани (в%%): 20% - органический компонент, 70% - минеральные вещества, 10% - вода. Губчатое вещество: 35-40% - минеральных веществ, до 50% - органические соединения, содержание воды - 10%.

    Особенность минерального компонента в том, что фактическое соотношение кальций/фосфор равно 1,5, хотя расчетное соотношение должно быть 1,67. Это позволяет кости легко связывать или отдавать ионы фосфата, поэтому кость - это депо для минералов, особенно для кальция.

    120.

    В нашем организме есть две взаимосвязанные системы протеолитических ферментов, в результате работы которых регулируется сосудистый тонус.

    1. РЕНИН-АНГИОТЕНЗИН-АЛЬДОСТЕРОНОВАЯ СИСТЕМА (РААС-система).

    Работа этой системы направлена на повышение артериального давления.

    2. КИНИНОВАЯ СИСТЕМА. Направлена на понижение артериального давления.

    Активация обеих систем сводится к синтезу биологически активных низкомолекулярных пептидов из их предшественников путем реакций ограниченного протеолиза.

    Главная роль принадлежит РААС, которая регулирует сосудистый тонус и водно-солевой обмен.

    В почках в клетках юкстагломерулярного аппарата (ЮГА) синтезируется РЕНИН - протеолитический фермент. Ренин участвует в регуляции сосудистого тонуса, превращая ангиотензиноген в декапептид ангиотензин-I путем ограниченного протеолиза. Из ангиотензина-I под действием фермента карбоксикатепсина образуется (тоже путем ограниченного протеолиза) октапептид ангиотензин-II. Он обладает сосудосуживающим эффектом, а также стимулирует выработку гормона коры надпочечников - альдостерона. Альдостерон усиливает реабсорбцию натрия и воды в почечных канальцах - это приводит к увеличению объема крови, циркулирующей в сосудах. В результате повышается артериальное давление. Когда молекула ангиотензина-II выполнит свою функцию, она подвергается тотальному протеолизу под действием группы специальных протеиназ - ангиотензиназ. Так работает РЕНИН-АНГИОТЕНЗИН-АЛЬДОСТЕРОНОВАЯ СИСТЕМА.

    Выработка ренина зависит от кровоснабжения почек. Поэтому при снижении артериального давления выработка ренина увеличивается, а при повышении - снижается. При патологии почек иногда наблюдается повышенная выработка ренина и может развиваться стойкая гипертензия (повышение артериального давления).

    Ренин-ангиотензин-альдостероновая система работает в тесном контакте с другой системой регуляции сосудистого тонуса: КАЛЛИКРЕИН-КИНИНОВОЙ СИСТЕМОЙ, действие которой приводит к понижению артериального давления.

    В почках синтезируется белок кининоген. Попадая в кровь, кининоген под действием сериновых протеиназ - калликреинов превращается в вазоактивные пептиды - кинины: брадикинин и каллидин. Брадикинин и каллидин обладают сосудорасширяющим эффектом - понижают артериальное давление. Инактивация кининов происходит при участии карбоксикатепсина - этот фермент одновременно влияет на обе системы регуляции сосудистого тонуса, что приводит к повышению атериального давления. Ингибиторы карбоксикатепсина применяются в лечебных целях при лечении некоторых форм артериальной гипертензии.

    122

    сердечная мышца по ряду хим-х соединений занимает промежуточное положение м-у скелетной мускулатурой и гладкими мышцами. В сердечной мышце значительно меньше миофибриллярных белков, чем в скелетной. Концентрация белков стромы в сердечной мышце выше, чем в скелетной. Известно так же, что миозин, тропомиозин и тропонин с.м. заметно отличаются по своим физико-химическим св-вам от соответствующих белков скелетной мускулатуры. Также отличается и фракционный с-в саркоплазматических белков. Саркоплазма миокарда содержит больше миоальбумина.

    Содержание АТФ в миокарде ниже чем в скелетной, но выше чем в гладкой. По содержанию гликогена миокард также занимает промежуточное положение. Миокард по сравнению с другими мышечными тканями богаче фосфолипидами, при окислении которых вырабатывается значительная часть энергии, необходимая для его сокращения.

    123.

    СОСТАВ ПЛАЗМЫ КРОВИ:

    90% - вода

    6-8% - белки

    2% - органические небелковые соединения

    1% - неорганические соли

    Натрий – основной осмотически активный ион внеклеточного пространства. В плазме концентрация Na+ приблизительно в 8 раз выше (132-150 ммоль/л), чем в эритроцитах.

    При гипернатриемии развивается синдром, связанный с гипергидратацией орг-ма. Накопление натрия в плазме крови наблюдается при паринхиматозном нефрите, у больных с врожденной сердечной недостаточностью, при первичном и вторичном гипераальдостеронизме. .

    Гипонатриемия сопровождается дегидратацией организма. Коррекция натриевого обмена осуществляется введением раствора натрия хлорида с расчетом дефицита его в неклеточном пространстве и клетке.

    Калий. Концентрация К+ в плазме колеблется от 3.8 до 5.4 ммоль/л; в эритроцитах его в20 раз больше. Уровень калия в клетке значительно выше, чем во внеклеточном пространстве, поэтому при заболеваниях сопровождающихся усиленным клеточным распадом или гемолизом, содержание калия в сыворотке крови уменьшается.

    Гиперкалиемия – при острой почечной недостаточности и гипоф-и коры надпочечников. Недостаток альдостерона приводит к усилению выведения с мочой натрия и воды и задержке в организме калия.

    При усиленной продукции альдостерона возникает гипокалиемия. Развивающаяся гипокалиемия вызывает тяжелые нарушения работы сердца.

    Кальций принимает активное участие в механизме нервно-мышечной возбудимости как антагонист К+ , мышечного сокращения, свертывания крови образует структурную основу костного скелета, влияет на проницаемость кл-х м-н.

    Гиперкальциемия наблюдается при развитии опухолей в костях, гиперплазии, или аденоме околощитовидных желез. Кальций поступает в плазму из костей и они становятся ломкими. Гипокальциемия наблюдается при гипопаратиреозе. Выпадение ф-й околощитовидных желез приводит к резкому снижению содержания К+ в крови, что может сопровождаться судорожными приступами. Понижение содержания К в плазме отмечают при рахите, механической желтухе, нефрозах, глорулонефритах.

    Фосфор. В клинике при исследовании крови различают следующие фракции фосфора: общий фосфат, кислоторастворимый фосфат, липоидный фосфат и неорганический фосфат. Для клинических целей чаще пользуются определением неорганического фосфата в плазме. Его содержание в плазме увеличивается при гипопаратиреозе, гипевитоминозе витамина Д, при приеме тироксина, облучении организма УФ лучами, при острой желтой атрофии печени, миеломе, лейкозах.

    Гипофосфатемия хар-на для рахита. Снижение уровня неорганического фосфата в плазме отмечается на ранних стадиях рахита, когда клинические симптомы недостаточно выражены. Гипофосфатемия наблудается при введении инсулина, гиперпаратиреозе, остеомаляции.

    Железо. (0.02 ммоль/л) Ежедневно в процессе распада гемоглобина освобождается около 25 мг. Железа, столько же потребляется при его синтезе. Повышение содержания железа в плазме наблюдается при ослаблении синтеза гемоглобина или усиленном распаде эритроцитов.

    Недостаток железа в организме может вызвать нарушение последнего этапа синтеза гемма – превращение протопорфирина 9 в гемм. В результате развивается анемия, сопровождающаяся увеличением содержания порфиринов в эр-х.

    124
    1   2   3   4   5   6   7   8


    написать администратору сайта